Advertisement

Antonie van Leeuwenhoek

, Volume 110, Issue 7, pp 971–983 | Cite as

A simple scaled down system to mimic the industrial production of first generation fuel ethanol in Brazil

  • Vijayendran RaghavendranEmail author
  • Thalita Peixoto Basso
  • Juliana Bueno da Silva
  • Luiz Carlos Basso
  • Andreas Karoly Gombert
Original Paper

Abstract

Although first-generation fuel ethanol is produced in Brazil from sugarcane-based raw materials with high efficiency, there is still little knowledge about the microbiology, the biochemistry and the molecular mechanisms prevalent in the non-aseptic fermentation environment. Learning-by-doing has hitherto been the strategy to improve the process so far, with further improvements requiring breakthrough technologies. Performing experiments at an industrial scale are often expensive, complicated to set up and difficult to reproduce. Thus, developing an appropriate scaled down system for this process has become a necessity. In this paper, we present the design and demonstration of a simple and effective laboratory-scale system mimicking the industrial process used for first generation (1G) fuel ethanol production in the Brazilian sugarcane mills. We benchmarked this system via the superior phenotype of the Saccharomyces cerevisiae PE-2 strain, compared to other strains from the same species: S288c, baker’s yeast, and CEN.PK113-7D. We trust that such a system can be easily implemented in different laboratories worldwide, and will allow a better understanding of the S. cerevisiae strains that can persist and dominate in this industrial, non-aseptic and peculiar environment.

Keywords

Acid treatment Cell recycling Ethanol Saccharomyces cerevisiae Scale down Viability Yeast physiology 

Notes

Acknowledgements

Otávio do Prado, Ricardo Luiz Dalia, Eliane Christina Mota and Camila de Souza Varize from ESALQ are acknowledged for their assistance during the fed-batch cultivations; Lab manager Mrs Priscila Hofmann Carvalho is thanked for her assistance during the HPLC analysis.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo [Grant Number 2015/14109-0 to AKG] and Programa Nacional de Pós DoutoradoCoordenação de Aperfeiçoamento de Pessoal de Nível Superior [to VR] for the scholarship awarded to him to carry out his postdoctoral research within the ‘Ph.D. program in Bioenergy’, involving the University of Campinas (Unicamp), the University of São Paulo (USP) and the University of the State of São Paulo (Unesp).

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical statement

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Supplementary material

10482_2017_868_MOESM1_ESM.docx (354 kb)
Supplementary material 1 (DOCX 354 kb)
10482_2017_868_MOESM2_ESM.docx (26 kb)
Supplementary material 2 (DOCX 26 kb)

References

  1. Albers E, Larsson C, Lidén G, Niklasson C, Gustafsson L (1996) Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol 62:3187–3195PubMedPubMedCentralGoogle Scholar
  2. Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OV, Missawa SK, Galzerani F, Costa GG, Vidal RO, Noronha MF, Dominska M, Andrietta MG, Andrietta SR, Cunha AF, Gomes LH, Tavares FC, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GA (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19:2258–2270. doi: 10.1101/gr.091777.109 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15:1351–1357. doi: 10.1038/nbt1297-1351 CrossRefPubMedGoogle Scholar
  4. Barnett J (2003) A history of research on yeasts 5: the fermentation pathway. Yeast 20:509–543. doi: 10.1002/yea.986 CrossRefPubMedGoogle Scholar
  5. Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163. doi: 10.1111/j.1567-1364.2008.00428.x CrossRefPubMedGoogle Scholar
  6. Basso LC, Basso TO, Rocha SN (2010) Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. In: Dr Marco Aurelio Dos Santos Bernardes (Ed.) (ed) Biofuel production-recent developments and prospectsGoogle Scholar
  7. Beato FB, Bergdahl B, Rosa CA, Forster J, Gombert AK (2016) Physiology of Saccharomyces cerevisiae strains isolated from Brazilian biomes: new insights into biodiversity and industrial applications. FEMS Yeast Res 16:1–13. doi: 10.1093/femsyr/fow076 CrossRefGoogle Scholar
  8. BP (2016) Statistical review of world energy. http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. Accessed 16 Jun 2016
  9. Brown NA, de Castro PA, de Castro Pimentel Figueiredo B, Savoldi M, Buckeridge MS, Lopes ML, de Lima Paullilo SC, Borges EP, Amorim HV, Goldman MH, Bonatto D, Malavazi I, Goldman GH (2013) Transcriptional profiling of Brazilian Saccharomyces cerevisiae strains selected for semi-continuous fermentation of sugarcane must. FEMS Yeast Res 13:277–290. doi: 10.1111/1567-1364.12031 CrossRefPubMedGoogle Scholar
  10. Conroy N, Tebble I, Lye GJ (2015) Creation of an ultra scale-down bioreactor mimic for rapid development of lignocellulosic enzymatic hydrolysis processes. J Chem Technol Biotechnol 90:1983–1990. doi: 10.1002/jctb.4801 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Delente J, Akin C, Krabbe E, Ladenburg K (1969) Fluid dynamics of anaerobic fermentation. Biotechnol Bioeng 11:631–646. doi: 10.1002/bit.260110410 CrossRefPubMedGoogle Scholar
  12. Della-Bianca BE, Basso TO, Stambuk BU, Basso LC, Gombert AK (2013) What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 97:979–991. doi: 10.1007/s00253-012-4631-x CrossRefPubMedGoogle Scholar
  13. Della-bianca BE, De Hulster E, Pronk JT, van Maris AJ, Gombert AK (2014) Physiology of the fuel ethanol strain. FEMS Yeast Res 14:1196–1205. doi: 10.1111/1567-1364.12217 CrossRefPubMedGoogle Scholar
  14. dos Santos LV, de Barros Grassi MC, Gallardo JCM, Pirolla RAS, Calderón LL, de Carvalho-Netto OV, Parreiras LS, Camargo ELO, Drezza AL, Missawa SK, Teixeira GS, Lunardi I, Pereira GAG (2016) Second-generation ethanol: the need is becoming a reality. Ind Biotechnol 12:40–57. doi: 10.1089/ind.2015.0017 CrossRefGoogle Scholar
  15. Egli T (2015) Microbial growth and physiology: a call for better craftsmanship. Front Microbiol 6:287. doi: 10.3389/fmicb.2015.00287 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gombert AK, van Maris AJ (2015) Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes. Curr Opin Biotechnol 33:81–86. doi: 10.1016/j.copbio.2014.12.012 CrossRefPubMedGoogle Scholar
  17. Hahn-Hägerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund M, Görgens J, van Zyl WH (2005) Role of cultivation media in the development of yeast strains for large scale industrial use. Microb Cell Fact 4:31. doi: 10.1186/1475-2859-4-31 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hensing M, Vrouwenvelder H, Hellinga C, Baartmans R, van Dijken H (1994) Production of extracellular inulinase in high-cell-density fed-batch cultures of Kluyveromyces marxianus. Appl Microbiol Biotechnol 42:516–521. doi: 10.1007/BF00173914 CrossRefGoogle Scholar
  19. Humphrey A (1998) Shake flask to fermentor: what have we learned? biochemical engineering : the beginnings. Biotechnol Prog 14:3–7CrossRefGoogle Scholar
  20. Kwolek-Mirek M, Zadrag-Tecza R (2014) Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res 14:1068–1079PubMedGoogle Scholar
  21. Larsson C, Nilsson A, Blomberg A, Gustafsson L (1997) Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon or nitrogen-limiting conditions. J Bacteriol 179:7243–7250CrossRefPubMedPubMedCentralGoogle Scholar
  22. Luttik MAH, van Spanning R, Schipper D, van Dijken JP, Pronk JT (1997) The low biomass yields of the acetic acid bacterium Acetobacter pasteurianus are due to a low stoichiometry of respiration-coupled proton translocation. Appl Environ Microbiol 63:3345–3351PubMedPubMedCentralGoogle Scholar
  23. Marques WL, Raghavendran V, Stambuk BU, Gombert AK (2016) Sucrose and Saccharomyces cerevisiae: a relationship most sweet. FEMS Yeast Res 16:1–16. doi: 10.1093/femsyr/fov107 Google Scholar
  24. Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik MA, Daran-Lapujade P, Vongsangnak W, Nielsen J, Heijne WH, Klaassen P, Paddon CJ, Platt D, Kötter P, van Ham RC, Reinders MJ, Pronk JT, de Ridder D, Daran JM (2012) De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11:36. doi: 10.1186/1475-2859-11-36 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nishida O, Kuwazaki S, Suzuki C, Shima J (2004) Superior molasses assimilation, stress tolerance, and trehalose accumulation of baker’s yeast isolated from dried sweet potatoes (hoshi-imo). Biosci Biotechnol Biochem 68:1442–1448CrossRefPubMedGoogle Scholar
  26. Noorman H (2011) An industrial perspective on bioreactor scale-down: what we can learn from combined large-scale bioprocess and model fluid studies. Biotechnol J 6:934–943. doi: 10.1002/biot.201000406 CrossRefPubMedGoogle Scholar
  27. Novacana (2016a) As usinas de Açúcar e Etanol do Brasil. https://www.novacana.com/usinas-brasil/. Accessed 15 Mar 2017
  28. Novacana (2016b) Governo Federal explica como o Brasil vai dobrar a produção de etanol. In: 2016-02-17. https://www.novacana.com/n/etanol/mercado/futuro/governo-federal-explica-brasil-dobrar-producao-etanol-170216/. Accessed 26 Oct 2016
  29. Panek A (1963) Function of trehalose in Baker’s yeast (Saccharomyces cerevisiae). Arch Biochem Biophys 100:422–425. doi: 10.1016/0003-9861(63)90107-3 CrossRefGoogle Scholar
  30. Pereira FB, Gomes DG, Guimarães PM, Teixeira JA, Domingues L (2012) Cell recycling during repeated very high gravity bio-ethanol fermentations using the industrial Saccharomyces cerevisiae strain PE-2. Biotechnol Lett 34:45–53. doi: 10.1007/s10529-011-0735-0 CrossRefPubMedGoogle Scholar
  31. Schmalzriedt S, Jenne M, Mauch K, Reuss M (2003) Integration of physiology and fluid dynamics. In: von Stockar U, van der Wielen L (eds) Process integration in biochemical engineering. Berlin, Heidelberg, pp 19–68CrossRefGoogle Scholar
  32. SGD Saccharomyces genome database. http://www.yeastgenome.org/
  33. Unica (2016) União Da Indústria De Cana De Açúcar. http://www.unica.com.br/. Accessed 29 Jan 2016
  34. Verduyn C, Postma E, Scheffers WA, van Dijken JP (1990) Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:405–412. doi: 10.1099/00221287-136-3-395 CrossRefPubMedGoogle Scholar
  35. Viana T, Loureiro-Dias MC, Prista C (2014) Efficient fermentation of an improved synthetic grape must by enological and laboratory strains of Saccharomyces cerevisiae. AMB Express 4:16. doi: 10.1186/s13568-014-0016-0 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.School of Food Engineering, LEMeBUniversity of CampinasCampinasBrazil
  2. 2.Department of Biological SciencesEscola Superior de Agricultura Luiz de Queiroz, USPPiracicabaBrazil
  3. 3.Department of Biology and Biological EngineeringChalmers University of TechnologyGöteborgSweden

Personalised recommendations