Antonie van Leeuwenhoek

, Volume 110, Issue 7, pp 963–969 | Cite as

Characterization of Marinovum faecis sp. nov., an alphaproteobacterium isolated from marine sediment

  • Jaewoo Yoon
  • So Young Kim
  • Songhee Park
  • Hyukjae ChoiEmail author
Original Paper


A Gram-negative, strictly aerobic, chemoheterotrophic, beige-pigmented, ovoid bacterium, designated YP194T, was isolated from marine sediment in the Republic of Korea. A phylogenetic analysis based on the 16S rRNA gene sequence indicated that the novel marine strain belongs to the family Rhodobacteraceae of the class Alphaproteobacteria, with high sequence similarity (98.4%) to Marinovum algicola FF3T. The DNA–DNA relatedness values between strains YP194T and M. algicola FF3T were 34.1 ± 2.7%. The DNA G+C content of strain YP194T was 63.1 mol%. Ubiquinone 10 (Q-10) was the sole respiratory quinone. The predominant cellular fatty acid was C18:1 ω7c (77.6%). Strain YP194T produced phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified aminolipid, an unidentified phospholipid and two unidentified lipids as polar lipids. From the combination of genotypic and phenotypic characteristics and the distinct phylogenetic position, the strain is considered to represent a novel species of the genus Marinovum for which the name Marinovum faecis sp. nov. is proposed. The type strain of M. faecis sp. nov. is YP194T (= KCCM 90263T = NBRC 111905T).


Alphaproteobacteria Marinovum faecis sp. nov. 16S rRNA gene Polyphasic taxonomy Marine sediment 



This work was supported by the National Research Foundation of Korea Grants (NRF-2014R1A1A2057302), Korea.

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10482_2017_867_MOESM1_ESM.pdf (57 kb)
Thin-layer chromatograms showing the total polar lipid compositions of YP194T. Total polar lipids were detected by spraying the plate with molybdatophosphoric acid, molybdenum blue, α-naphthol, ninhydrin and Dragendorff’s reagent. PG: phosphatidylglycerol, PE: phosphatidylenthanolamine, PC: phosphatidylcholine, UAL: unidentified aminolipid, UPL: unidentified phospholipid, UL: unidentified lipid Supplementary material 1 (PDF 57 kb)
10482_2017_867_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 11 kb)


  1. Atlas RM (2010) Handbook of microbiological media, 4th edn. CRC, Boca RatonCrossRefGoogle Scholar
  2. Beiss U (1964) Paper chromatographic separation of plant lipids. J Chromatogr 13:104–110CrossRefPubMedGoogle Scholar
  3. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070PubMedGoogle Scholar
  4. Collins MD, Jones D (1981) A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 51:129–134CrossRefPubMedGoogle Scholar
  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  6. Fitch WM (1971) Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  7. Garrity GM, Bell JA, Lilburn T (2005) Family I. Rhodobacteraceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2C, 2nd edn. Springer, New York, p 161Google Scholar
  8. Hansen GH, Sørheim R (1991) Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13:231–241CrossRefGoogle Scholar
  9. Iwaki H, Yasukawa N, Fujioka M, Takada K, Hasegawa Y (2013) Isolation and characterization of a marine cyclohexylacetate-degrading bacterium Lutimaribacter litoralis sp. nov., and reclassification of Oceanicola pacificus as Lutimaribacter pacificus comb. nov. Curr Microbiol 66:588–593CrossRefPubMedGoogle Scholar
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  11. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through the comparative studies of sequence evolution. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  12. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207CrossRefGoogle Scholar
  13. Lafay B, Ruimy R, de Traubenberg CR, Breittmayer V, Gauthier MJ, Christen R (1995) Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima. Int J Syst Bacteriol 45:290–296CrossRefPubMedGoogle Scholar
  14. Lewin RA, Lounsbery DM (1969) Isolation, cultivation and characterization of flexibacteria. J Gen Microbiol 58:145–170CrossRefPubMedGoogle Scholar
  15. Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ, Brinkhoff T et al (2006) Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 56:1293–1304CrossRefPubMedGoogle Scholar
  16. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  17. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  18. Park S, Park DS, Bae KS, Yoon JH (2014) Phaeobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 64:1378–1383CrossRefPubMedGoogle Scholar
  19. Power DA, Johnson JA (2009) Difco™ and BBL™ Manual: manual of microbiological culture media, 2nd edn. Becton Dickinson and Company, Sparks, pp 359–360Google Scholar
  20. Ruiz-Ponte C, Samain JF, Sanchez JL, Nicolas JL (1999) The benefit of a Roseobacter species on the survival of scallop larvae. Mar Biotechnol 1:52–59CrossRefPubMedGoogle Scholar
  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  22. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, NewarkGoogle Scholar
  23. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  24. Suzuki K, Kaneko T, Komagata K (1981) Deoxyribonucleic acid homologies among coryneform bacteria. Int J Syst Bacteriol 31:131–138CrossRefGoogle Scholar
  25. Tamura K, Peterson D, Petersen N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using Maximum Likelihood, evolutionary distance, and Maximum Parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  27. Uchino Y, Hirata A, Yokota A, Sugiyama J (1998) Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44:201–210CrossRefPubMedGoogle Scholar
  28. Wang L, Liu Y, Shi X, Wang Y, Zheng Y, Dai X, Zhang XH (2016) Xuhuaishuia manganoxidans gen. nov., sp. nov., amanganese-oxidizing bacterium isolated from deep-sea sediments from the Pacific Polymetallic Nodule Province. Int J Syst Evol Microbiol 66:1521–1526CrossRefPubMedGoogle Scholar
  29. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefPubMedPubMedCentralGoogle Scholar
  30. Worliczek HL, Kämpfer P, Rosengarten R, Tindall RBJ, Busse HJ (2007) Polar lipid and fatty acid profiles-re-vitalizing old approaches as a modern tool for the classification of mycoplasmas? Syst Appl Microbiol 30:355–370CrossRefPubMedGoogle Scholar
  31. Zhang G, Yang Y, Wang S, Sun Z, Jiao K (2015) Alkalimicrobium pacificum gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae. Int J Syst Evol Microbiol 65:2453–2458CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.College of PharmacyKeimyung UniversityDaeguRepublic of Korea
  2. 2.College of PharmacyYeungnam UniversityGyeongsanRepublic of Korea

Personalised recommendations