Advertisement

Antonie van Leeuwenhoek

, Volume 110, Issue 10, pp 1271–1279 | Cite as

A proposal for a portal to make earth’s microbial diversity easily accessible and searchable

  • Boris A. VinatzerEmail author
  • Long Tian
  • Lenwood S. Heath
Review

Abstract

Estimates of the number of bacterial species range from 107 to 1012. At the pace at which descriptions of new species are currently being published, the description of all bacterial species on earth will only be completed in thousands of years. However, even if one day all species were named and described, these names and descriptions would still be of little practical value unless they could be easily searched and accessed, so that novel strains could be easily identified as members of any of these species. To complicate the situation further, many of the currently known species contain significant genotypic and phenotypic diversity that would still be missed if description of microbial diversity were limited to species. The solution to this problem could be a database in which every bacterial species and every intra-specific group is anchored to a genome-similarity framework. This ideal database should be searchable using complete or partial genome sequences as well as phenotypes. Moreover, the database should include functions to easily add newly sequenced novel strains, automatically place them into the genome-similarity framework, identify them as members of an already named species, or tag them as members of yet to be described species or new intra-specific groups. Here, we propose the means to develop such a database by taking advantage of the concept of genome sequence similarity-based codes, called Life Identification Numbers or LINs.

Keywords

Genome sequences Average nucleotide identity Database Bacterial species 

Notes

Acknowledgements

LSH was supported by National Science Foundation Grant DBI-1062472. BAV and LT were supported by National Science Foundation grant IOS-1354215. Funding for work in the Vinatzer laboratory was also provided in part by the Virginia Agricultural Experiment Station and the Hatch Program of the National Institute of Food and Agriculture, US Department of Agriculture.

References

  1. Amann R, Rossello-Mora R (2016) After all, only millions? MBio. doi: 10.1128/mBio.00999-16 Google Scholar
  2. Berge O, Monteil CL, Bartoli C, Chandeysson C, Guilbaud C, Sands DC, Morris CE (2014) A user’s guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS ONE 9:e105547. doi: 10.1371/journal.pone.0105547 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bionomenclature ICo (2011) Bionomenclature Across All Groups of Organisms. http://www.bgbm.org/biodivinf/docs/biocode2011/biocode2.html—Introduction. Accessed Nov 23 2016
  4. Cantino PD, de Queiroz K (2004) The Phylocode. http://www.ohio.edu/phylocode/PhyloCode4c.pdf. 2013
  5. Cui Y et al (2013) Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci 110:577–582. doi: 10.1073/pnas.1205750110 CrossRefPubMedGoogle Scholar
  6. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci 99:10494–10499. doi: 10.1073/pnas.142680199 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dayrat B, Cantino PD, Clarke JA, de Queiroz K (2008) Species names in the phylocode: the approach adopted by the international society for phylogenetic nomenclature. Syst Biol 57:507–514. doi: 10.1080/10635150802172176 CrossRefPubMedGoogle Scholar
  8. Gevers D et al (2005) Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739CrossRefPubMedGoogle Scholar
  9. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91CrossRefPubMedGoogle Scholar
  10. ICSP ICoSoP (2008) International code of nomenclature of prokaryotes (2008 Revision) [DRAFT]. http://code.icsp.org/. Accessed 22 Sept 2014
  11. ICTV ICoToV (2016) The international code of virus classification and nomenclature. http://www.ictvonline.org/codeOfVirusClassification.asp. Accessed 23 Nov 2016
  12. ICZN ICoZN (2012) International Code of Zoological Nomenclature. http://www.nhm.ac.uk/hosted-sites/iczn/code/. Accessed 23 Nov 2016
  13. Kamau EC, Winter G, Stoll P-T (2015) Research and development on genetic resources: public domain approaches in implementing the nagoya protocol. Routledge, AbingdonGoogle Scholar
  14. Kim M, Oh H-S, Park S-C, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351. doi: 10.1099/ijs.0.059774-0 CrossRefPubMedGoogle Scholar
  15. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572CrossRefPubMedPubMedCentralGoogle Scholar
  16. Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci 113:5970–5975. doi: 10.1073/pnas.1521291113 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Marakeby H et al (2014) A system to automatically classify and name any individual genome-sequenced organism independently of current biological classification and nomenclature. PLoS ONE 9:e89142. doi: 10.1371/journal.pone.0089142 CrossRefPubMedPubMedCentralGoogle Scholar
  18. McNeill J et al. (2012) International code of nomenclature for algae, fungi, and plants (Melbourne Code) http://www.iapt-taxon.org/nomen/main.php. Accessed 23 Nov 2016
  19. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. doi: 10.1186/1471-2105-14-60 CrossRefGoogle Scholar
  20. Meier-Kolthoff JP et al (2014) Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genom Sci. doi: 10.1186/1944-3277-9-2 Google Scholar
  21. Parker CT, Tindall BJ, Garrity GM (2015) International Code of Nomenclature of Prokaryotes. Int J Syst Evolut Microbiol. doi: 10.1099/ijsem.0.000778 Google Scholar
  22. Parte AC (2013) List of prokaryotic names with standing in nomenclature. http://www.bacterio.net/-number.html—total. Accessed 31 Jan 2017
  23. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131. doi: 10.1073/pnas.0906412106 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Rossello-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67CrossRefPubMedGoogle Scholar
  25. Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek. doi: 10.1007/s10482-017-0841-7 PubMedGoogle Scholar
  26. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44(4):846–849CrossRefGoogle Scholar
  27. Sutcliffe IC, Trujillo ME, Goodfellow M (2012) A call to arms for systematists: revitalising the purpose and practises underpinning the description of novel microbial taxa. Antonie Van Leeuwenhoek 101:13–20. doi: 10.1007/s10482-011-9664-0 CrossRefPubMedGoogle Scholar
  28. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266. doi: 10.1099/ijs.0.016949-0 CrossRefPubMedGoogle Scholar
  29. Van Ert MN et al (2007) Global genetic population structure of Bacillus anthracis. PLoS ONE 2:e461. doi: 10.1371/journal.pone.0000461 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Vandamme P, Peeters C (2014) Time to revisit polyphasic taxonomy. Antonie Van Leeuwenhoek 106:57–65. doi: 10.1007/s10482-014-0148-x CrossRefPubMedGoogle Scholar
  31. Vinatzer BA, Weisberg AJ, Monteil CL, Elmarakeby HA, Sheppard SK, Heath LS (2016) A proposal for a genome similarity-based taxonomy for plant-pathogenic bacteria that is sufficiently precise to reflect phylogeny, host range, and outbreak affiliation applied to Pseudomonas syringae sensu lato as a proof of concept phytopathology: PHYTO-07-16-0252-R doi:  10.1094/PHYTO-07-16-0252-R
  32. Wayne LG et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  33. Weisberg AJ, Marakeby H, Heath LS, Vinatzer BA (2015) Similarity-based codes sequentially assigned to ebolavirus genomes are informative of species membership, associated outbreaks, and transmission chains. Open Forum Infect Dis. doi: 10.1093/ofid/ofv024 PubMedPubMedCentralGoogle Scholar
  34. Wirth T et al (2006) Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60:1136–1151CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Boris A. Vinatzer
    • 1
    Email author
  • Long Tian
    • 1
    • 2
  • Lenwood S. Heath
    • 3
  1. 1.Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburgUSA
  2. 2.GeneticsBioinformatics, and Computational Biology Graduate ProgramVirginia TechBlacksburgUSA
  3. 3.Department of Computer ScienceVirginia TechBlacksburgUSA

Personalised recommendations