Antonie van Leeuwenhoek

, Volume 110, Issue 4, pp 553–562 | Cite as

Enterovirga rhinocerotis gen. nov., sp. nov., isolated from Rhinoceros unicornis faeces

  • Xiu Chen
  • Qin-Yuan Li
  • Gui-Ding Li
  • Hui Lei
  • Yi JiangEmail author
  • Li HanEmail author
  • Xue-Shi Huang
  • Cheng-Lin Jiang
Original Paper


A novel strain, YIM 100770T, was isolated from Rhinoceros unicornis faeces collected from Yunnan Wild Animal Park, China. The taxonomic status was determined based on the physiological, biochemical and phylogenetic characteristics. Strain YIM 100770T was observed to be rod-shaped, non-motile, Gram-stain negative and aerobic. The G+C content of the genomic DNA was determined to be 68.5 mol%. The cells of strain YIM 100770T contain ubiquinone Q-10 as the respiratory quinone. The major fatty acids (>1%) were identified as Summed feature 8 (C18:1 ω7c and/or C18:1 ω6c; 78.1%), Summed feature 4 (iso-C17:1-I and/or anteiso-C17:1-B; 12.9%), C19:0 cyclo ω8c (2.8%), C16:0 (2.2%) and C18:0 (2.2%). Comparison of 16S rRNA gene sequences revealed the strain show high similarities with the members of the genera Psychroglaciecola (94.5%), Methylobacterium (90.5–94.1%) and Microvirga (92.0–93.3%) in the family Methylobacteriaceae. In addition, the strain also showed high similarities with the members of the genera Chelatococcus (93.7–94.0%) and Pseudochelatococcus (93.1–93.7%) in the family Beijerinckiacea, and the genus Bosea (93.1–93.8%) in the family Bradyrhizobiaceae. The phylogenetic analysis, combined with the chemical characteristics, suggest that the strain represents a novel genus in the order Rhizobiales of the class Alphaproteobacteria, for which the name Enterovirga rhinocerotis gen. nov., sp. nov. is proposed. The type strain of E. rhinocerotis is YIM 100770T (=DSM 25903T = CCTCC AB 2012048T).


Enterovirga rhinocerotis gen. nov., sp. nov. 16S rRNA gene Faeces 



This research was supported by the National Natural Science Foundation of China (Nos. 31270001, 31460005 and 81573327), and supported by Program for New Century Excellent Talents in University and Yunnan Provincial Society Development Project (2014BC006). Thanks for the assistance of Yunnan Wild Animal Park, and thanks for the assistance from Mr. Jiang Liu and You-Long Li.

Supplementary material

10482_2016_823_MOESM1_ESM.docx (3.1 mb)
Supplementary material 1 (DOCX 3196 kb)


  1. Akutsu T (2000) Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discret Appl Math 104:45–62CrossRefGoogle Scholar
  2. Auling G, Busse HJ, Egli T, El-Banna T, Stackebrandt E (1993) Description of the gram-negative, obligately aerobic, nitrilotriacetate (nta)-utilizing bacteria as Chelatobacter heintzii, gen. nov. sp. nov. and Chelatococcus asaccharovorans, gen. nov. sp. nov. Syst Appl Microbiol 16:104–112CrossRefGoogle Scholar
  3. Bouthinon D, Soldano H (1999) A new method to predict the consensus secondary structure of a set of unaligned RNA sequences. Bioinformatics 15:785–798CrossRefPubMedGoogle Scholar
  4. Cao YR, Jiang Y, Jin RX, Han L, He WX, Li YL, Huang XS, Xue QH et al (2012) Enteractinococcus coprophilus gen. nov., sp. nov., of the family Micrococcaceae, isolated from Panthera tigris amoyensis faeces, and transfer of Yaniella fodinae Dhanjal. 2011 to the genus Enteractinococcus as Enteractinococcus fodinae comb. nov. Int J Syst Evol Microbiol 62:2710–2716CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cerny G (1978) Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. Appl Microbiol Biotechnol 5:113–122CrossRefGoogle Scholar
  6. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP, Xu LH, Jiang CL (2001) Streptomonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363CrossRefPubMedGoogle Scholar
  7. Das SK, Mishra AK, Tindall BJ, Rainey FA, Stackebrandt E (1996) Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov. sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Evol Microbiol 46:981–987Google Scholar
  8. David KL (2005) Class I. Alphaproteobacteria class. In: Brenner JD, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. New York, Springer, pp 324–574Google Scholar
  9. Ellis RJ, Bruce KD, Jenkins C, Stothard JR, Ajarova L, Mugisha L, Viney ME (2013) Comparison of the distal gut microbiota from people and animals in africa. PLoS ONE 8:570Google Scholar
  10. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  13. Hwang CY, Cho BC (2008) Cohaesibacter gelatinilyticus gen. nov. sp. nov. a marine bacterium that forms a distinct branch in the order Rhizobiales, and proposal of Cohaesibacteraceae fam. nov. Int J Syst Evol Microbiol 58:267–277CrossRefPubMedGoogle Scholar
  14. Kämpfer P, Scholz HC, Langer S, Wernery U, Wernery R, Johnson B, Joseph M, Lodders N, Busse HJ (2010) Camelimonas lactis gen. nov., sp. nov., isolated from the milk of camels. Int J Syst Evol Microbiol 60:2382–2386CrossRefPubMedGoogle Scholar
  15. Kämpfer P, Glaeser SP, Gräber M, Rabenstein A, Kuever J, Busse HJ (2015) Pseudochelatococcus lubricantis gen. nov. sp. nov. and pseudochelatococcus contaminans sp. nov. from coolant lubricants. Int J Syst Evol Microbiol 65:147–153CrossRefPubMedGoogle Scholar
  16. Kanso S, Patel BKC (2003) Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53:401–406CrossRefPubMedGoogle Scholar
  17. Kim SG, Joung SH, Ahn CY, Ko SR, Boo SM, Oh HM (2003) Microvirga subterranea gen. nov. sp. nov. a moderate thermophile from a deep subsurface australian thermal aquifer. Int J Syst Evol Microbiol 53:401–406CrossRefGoogle Scholar
  18. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  19. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  20. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367CrossRefGoogle Scholar
  21. Kulichevskaya IS, Danilova OV, Tereshina VM, Kevbrin VV, Dedysh SN (2014) Descriptions of Roseiarcus fermentans gen. nov. sp. nov. a bacteriochlorophyll a-containing fermentative bacterium related phylogenetically to alphaproteobacterial methanotrophs, and of the family Roseiarcaceae fam. nov. Int J Syst Evol Microbiol 64:2558–2565CrossRefPubMedGoogle Scholar
  22. Lee KB, Liu CT, Anzai Y, Kim H, Aono T, Oyaizu H (2005) The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov. Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919CrossRefPubMedGoogle Scholar
  23. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651CrossRefPubMedPubMedCentralGoogle Scholar
  24. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  25. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  26. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  27. Panday D, Das SK (2010) Chelatococcus sambhunathii sp. nov. a moderately thermophilic alphaproteobacterium isolated from hot spring sediment. Int J Syst Evol Microbiol 60:861–865CrossRefPubMedGoogle Scholar
  28. Patt TE, Cole GC, Hanson RS (1976) Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 26:226–229CrossRefGoogle Scholar
  29. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, YamadaT, Mende, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Paslier DL, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz PT, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Consortium M, Bork P, Ehrlich D, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRefPubMedPubMedCentralGoogle Scholar
  30. Qu ZH, Jiang F, Chang XL, Qiu X, Ren LZ, Fang CX, Peng F (2014) Psychroglaciecola arctica gen. nov. sp. nov. isolated from arctic glacial foreland soil. Int J Syst Evol Microbiol 64:1817–1824CrossRefPubMedGoogle Scholar
  31. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  32. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16Google Scholar
  33. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  34. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhart P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  36. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  37. Thomsen TR, Blackall LL, Muro MA, Nielsen JL, Nielsen PH (2006) Meganema perideroedes gen. nov., sp. nov., a filamentous alphaproteobacterium from activated sludge. Int J Syst Evol Microbiol 56:1865–1868CrossRefPubMedGoogle Scholar
  38. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153CrossRefPubMedGoogle Scholar
  39. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645CrossRefPubMedGoogle Scholar
  40. Yoon JH, Kang SJ, Im WT, Lee ST, Oh TK (2008) Chelatococcus daeguensis sp. nov. isolated from wastewater of a textile dye works, and emended description of the genus Chelatococcus. Int J Syst Evol Microbiol 58:2224–2228CrossRefPubMedGoogle Scholar
  41. Zhang JL, Song F, Xin YH, Zhang J, Fang CY (2009) Microvirga guangxiensis sp. nov. a novel alphaproteobacterium from soil, and emended description of the genus Microvirga. Int J Syst Evol Microbiol 59:1997–2001CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Xiu Chen
    • 1
    • 2
  • Qin-Yuan Li
    • 1
  • Gui-Ding Li
    • 1
    • 2
  • Hui Lei
    • 2
  • Yi Jiang
    • 1
    Email author
  • Li Han
    • 2
    Email author
  • Xue-Shi Huang
    • 2
  • Cheng-Lin Jiang
    • 1
  1. 1.Yunnan Institute of MicrobiologyYunnan UniversityKunmingPeople’s Republic of China
  2. 2.Institute of Microbial Pharmaceuticals, College of Life and Health SciencesNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations