Skip to main content
Log in

Frankia inefficax sp. nov., an actinobacterial endophyte inducing ineffective, non nitrogen-fixing, root nodules on its actinorhizal host plants

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Strain EuI1cT is the first actinobacterial endophyte isolated from Elaeagnus umbellata that was shown to be infective on members of Elaeagnaceae and Morella but lacking the ability to form effective root nodules on its hosts. The strain can be easily distinguished from strains of other Frankia species based on its inability to produce vesicles, the specialized thick-walled structures where nitrogen fixation occurs. Chemotaxonomically, strain EuI1cT contains phosphatidylinositol, diphosphatidylglycerol, two glycophospholipids and phosphatidylglycerol as phospholipids. The whole cell sugars were composed of glucose, galactose, mannose, ribose, rhamnose and fucose as diagnostic sugars of the species. Major fatty acids were iso-C16:0, C17:1 ω8c and C15:0 and C17:0 and the predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). Analysis of the 16S rRNA gene sequence of strain EuI1cT showed 97, 97.4 and 97.9% identity with Frankia elaeagni DSM 46783T, Frankia casuarinae DSM 45818T and Frankia alni DSM 45986T, respectively. Digital DNA:DNA hybridizations with type strains of the three Frankia species with validly/effectively published names are significantly below 70%. These results warrant distinction of EuI1cT (= DSM 45817T = CECT 9037T) as the type strain of a novel species designated Frankia inefficax sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baker DD (1987) Relationships among pure cultured strains of Frankia based on host specificity. Physiol Plant 70:245–248

    Article  Google Scholar 

  • Baker D, Newcomb W, Torrey JG (1980) Characterization of an ineffective actinorhizal microsymbiont, Frankia sp. EuI1 (Actinomycetales). Can J Microbiol 26:1072–1089

    Article  CAS  PubMed  Google Scholar 

  • Becking JH (1970) Frankiaceae fam. nov. (Actinomycetales) with one new combination and six new species of the genus Frankia Brunchorst 1886, 174. Int J Syst Bacteriol 20:201–220

    Article  Google Scholar 

  • Brunchorst J (1886) Über einige Wurzelanschwellungen, besonders diejenigen von Alnus und den Elaeagnaceen. Unters Bot Inst Tübingen 2:151–177

    Google Scholar 

  • Collins MD (1985) Analysis of isoprenoid quinone. Method Microbiol 18:329–366

    Article  CAS  Google Scholar 

  • Collins MD, Shah HN (1984) Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa. Arch Microbiol 137:247–249

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghodhbane-Gtari F, Nouioui I, Chair M, Boudabous A, Gtari M (2010) 16S-23S rRNA intergenic spacer region variability in the genus Frankia. Microb Ecol 60:487–495

    Article  CAS  PubMed  Google Scholar 

  • Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786

    Article  Google Scholar 

  • Hahn D, Lechevalier MP, Fischer A, Stackebrandt E (1989) Evidence for a close phylogenetic relationship between members of the genera Frankia, Geodermatophilus, and “Blastococcus” and emdendation of the family Frankiaceae. Syst Appl Microbiol 11:236–242

    Article  CAS  Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger. J Liq Chrom 5:2359–2387

    Article  CAS  Google Scholar 

  • Kroppenstedt RM, Goodfellow M (2006) The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillispora and Thermomonospora. Archaea, Bacteria, Firmicutes, Actinomycetes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 682–724

    Chapter  Google Scholar 

  • Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance, and desoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361

    Article  CAS  Google Scholar 

  • Lechevalier MP (1994) Taxonomy of the genus Frankia (Actinomycetales). Int J Syst Bacteriol 44:1–8

    Article  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1979) The taxonomic position of the actinomycetic endophytes. In: Gordon JC, Wheeler CT, Perry DA (eds) Symbiotic nitrogen fixation in the management of temperate forests. Oregon State University, Forest Research Laboratory, Corvallis, pp 111–121

    Google Scholar 

  • Lechevalier MP, Lechevalier HA (1990) Systematics, isolation and culture of Frankia. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic Press, San Diego, pp 35–60

    Chapter  Google Scholar 

  • Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P (2013a) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013b) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  • Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, Fiebig A, Rohde C, Rohde M, Fartmann B, Goodwin LA, Chertkov O, ReddyT Pati A, Ivanova N, Markowitz V, Kyrpides NC, Woyke T, Göker M, Klenk H-P (2014a) Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genom Sci 9:2

    Article  Google Scholar 

  • Meier-Kolthoff JP, Klenk H-P, Göker M (2014b) Taxonomic use of the G + C content and DNA:DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356

    Article  CAS  PubMed  Google Scholar 

  • Miller LT (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Murry MA, Fontaine MS, Tjepkema JD (1984) Oxygen protection of nitrogenase in Frankia sp. HFPArI3. Arch Microbiol 139:162–166

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J, Evtushenko L, Misra AK (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nouioui I, Ghodhbane-Gtari F, Beauchemin NJ, Tisa LS, Gtari M (2011) Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences. Antonie Van Leeuwenhoek 100:579–587

    Article  PubMed  Google Scholar 

  • Nouioui I, Ghodhbane-Gtari F, Montero-Calasanz MC, Göker M, Meier-Kolthoff JP, Schumann P, Rohde M, Goodfellow M, Fernandez MP, Normand P, Tisa LS, Klenk H-P, Gtari M (2016) Proposal of a type strain for Frankia alni (Woronin 1866) Von Tubeuf 1895, emended description of Frankia alni, and recognition of Frankia casuarinae sp nov and Frankia elaeagni sp nov. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.001496

    Google Scholar 

  • Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A (2010) How many bootstrap replicates are necessary? J Comput Biol 17:337–354

    Article  CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical note 101, DE: MIDI

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwintzer CR, Tjepkema JD (1990) The biology of Frankia and actinorhizal plants. Academic Press, San Diego

    Google Scholar 

  • Sen A, Daubin V, Abrouk D, Gifford I, Berry AM, Normand P (2014) The phylogeny of actinobacteria revisited in the light of complete genomes, the orders Frankiales and Micrococcales should be split into coherent entities. Proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Microbiol 64:3821–3832

    Article  PubMed  Google Scholar 

  • Skipski VP, Peterson RF, Barclay M (1964) Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J 90:374–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Evol Microbiol 47:479–491

    Google Scholar 

  • Stahl E, Kaltenbach U (1961) Dünnschicht-Chromatographie. VI. Mitteilung. Spurenanalyse von Zuckergemischen auf Kieselgur G-Schichten. J Chromatogr 5:351–355

    Article  CAS  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin layer chromatography. J Appl Microbiol 28:226–231

    CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and Other Methods), Version 4.0 b10. Sinauer Associates, Sunderland

  • Tindall BJ (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130

    Article  CAS  Google Scholar 

  • Tisa LS, McBride M, Ensign JC (1983) Studies of growth and morphology of Frankia strains EAN1pec, EuI1c, CpI1, and ACN1AG. Can J Bot 61:2768–2773

    Article  CAS  Google Scholar 

  • Tisa LS, Oshone R, Sarkar I, Ktari A, Sen A, Gtari M (2016) Genomic approaches toward understanding the actinorhizal symbiosis: an update on the status of the Frankia genomes. Symbiosis. doi:10.1007/s13199-016-0390-2

    Google Scholar 

  • Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N, Klenk H-P, Göker M (2013) opm: an R package for analysing OmniLog (R) phenotype microarray data. Bioinformatics 29:1823–1824

    Article  CAS  PubMed  Google Scholar 

  • Von Tubeuf K (1895) In Pflanzenkrankheiten durch Kryptogame Parasiten verursacht. Springer, Berlin, pp 1–599

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Woronin MS (1866) Über die bei der Schwarzerle (Alnus glutinosa) und bei der gewöhnlichen Garten-Lupine (Lupinus mutabilis) auftretenden Wurzelanschwellungen. Mem Acad Imp Sci St Petersbourg VII Ser 10:1–13

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Laboratoire Microorganismes & Biomolécules Actives, Université Tunis El-Manar, Tunisia (grant LR03ES03). We are grateful to Marlen Jando and Gabriele Pötter for help with the chemotaxonomic analyses and to Brian J. Tindall (all at DSMZ) for helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Gtari.

Additional information

GenBank/EMBL/DDBJ accession numbers of the 16S rRNA gene and the whole genome sequences of EuI1c are respectively KX695197 and CP002299.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouioui, I., Ghodhbane-Gtari, F., del Carmen Montero-Calasanz, M. et al. Frankia inefficax sp. nov., an actinobacterial endophyte inducing ineffective, non nitrogen-fixing, root nodules on its actinorhizal host plants. Antonie van Leeuwenhoek 110, 313–320 (2017). https://doi.org/10.1007/s10482-016-0801-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0801-7

Keywords

Navigation