Antonie van Leeuwenhoek

, Volume 110, Issue 3, pp 437–444 | Cite as

A novel subspecies of ‘Candidatus Liberibacter africanus’ found on native Teclea gerrardii (Family: Rutaceae) from South Africa

  • Ronel Roberts
  • Gerhard PietersenEmail author
Short Communication


The phloem limited bacterium ‘Candidatus Liberibacter africanus’ is associated with citrus greening disease in South Africa. This bacterium has been identified solely from commercial citrus in Africa and the Mascarene islands, and its origin may lie within an indigenous rutaceous host from Africa. Recently, in determining whether alternative hosts of Laf exist amongst the indigenous rutaceous hosts of its triozid vector, Trioza erytreae, three novel subspecies of Laf were identified i.e. ‘Candidatus Liberibacter africanus subsp. clausenae’, ‘Candidatus Liberibacter africanus subsp. vepridis’ and ‘Candidatus Liberibacter africanus subsp. zanthoxyli’ in addition to the formerly identified ‘Candidatus Liberibacter africanus subsp. capensis’. The current study expands upon the range of indigenous rutaceous tree species tested for liberibacters closely related to Laf and its subspecies. A collection of 121 samples of Teclea and Oricia species were sampled from Oribi Gorge and Umtamvunu nature reserves in KwaZulu Natal. Total DNA was extracted and the presence of liberibacters from these samples determined using a generic liberibacter TaqMan real-time PCR assay. Liberibacters from positive samples were further characterised through amplification and sequencing of the 16S rRNA, outer-membrane protein (omp) and 50S ribosomal protein L10 (rplJ) genes. A single Teclea gerrardii specimen tested positive for a liberibacter and, through phylogenetic analyses of the three genes sequenced, was shown to be unique, albeit closely related to ‘Ca. L. africanus’ and ‘Ca. L. africanus subsp. zanthoxyli’. We propose that this newly identified liberibacter be named ‘Candidatus Liberibacter africanus subsp. tecleae’.


Liberibacter Teclea gerrardii Subspecies 



We would like to thank Citrus Research International (CRI), the National Research Foundation-THRIP program (NRF-THRIP) and the Department of Science and Technology (DST)/NRF Centre of Excellence in Tree Health Biotechnology (CTHB) for funding. We would also like to thank Dr. Hugh Glen for his assistance in naming the novel liberibacter subspecies described herein and Prof. Aharon Oren, Hebrew University of Jerusalem, for help with the etymology and syllabification of the name.


  1. Bastianel C, Garnier-Semancik M, Renaudin J, Bové JM, Eveillard S (2005) Diversity of ‘Candidatus Liberibacter asiaticus’ based on the omp gene sequence. Appl Environ Microbiol 71:6473–6478CrossRefPubMedPubMedCentralGoogle Scholar
  2. Burckhard D, Ouvrard D (2012) A revised classification of the jumping plant-lice (Hemiptera: Psylloidea). Zootaxa 3509:1–34CrossRefGoogle Scholar
  3. Chase MW, Salamin N, Wilkinsin M, Dunwell JM, Kesanakurthi RP, Haidar N, Savolainen V (2005) Land plants and DNA barcodes: short term and long term goals. Philos Trans R Soc B 360:1889–1895CrossRefGoogle Scholar
  4. Coletta-Filho HD, Targon MLPN, Takita MA, De Negri JD, Pompeu J Jr, Machado MA, do Amaral AM, Muller GW (2004) First report of the causal agent of huanglongbing (‘Candidatus Liberibacter asiaticus’) in Brazil. Plant Dis 88:1382CrossRefGoogle Scholar
  5. da Graça JV (2008) Biology, history and world status of huanglongbing. I Taller Internacional sobre Huanglongbing de los citricos (Candidatus Liberibacter spp.) y el psílido asiático de los cítricos (Diaphorina citri) Hermosillo. Sonora, Mexico, pp 1–7Google Scholar
  6. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  7. Fagen JR, Leonard MT, Coyle JF, McCullough CM, Davis-Richerdson AG, Davie MJ, Triplett EW (2014) Liberibacter crescens gen. nov., sp. nov., the first cultured member of the genus Liberibacter. Int J Syst Evol Microbiol 64:2461–2466CrossRefPubMedGoogle Scholar
  8. Garnier M, Bove JM (1996) Distribution of the huanglongbing (greening) Liberobacter species in fifteen African and Asian countries. In: da Graça JV, Lee RF and Yokomi RK (eds) Proceedings of the thirteenth conference of the International Organization of Citrus Virologists, University of California, Riverside pp. 388–391Google Scholar
  9. Garnier M, Jaqoueix S, Toorawwaw P, Grisoni M, Mallessard R, Dookun A, Saumtally S, Autrey JC, Bové JM (1996) Both huanglongbing (greening) Liberibacter species are present in Mauritius and Réunion. In: de Graça JV, Lee RF and Yokomi RK Proceedings of the thirteenth conference of the International Organization of Citrus Virologists, University of California, Riverside, pp. 388–391Google Scholar
  10. Garnier M, Jaqoueix-Eveillard S, Cronje PR, Le Roux HF, Bové JM (2000) Genomic characterization of a liberibacter present in an ornamental rutaceous tree, Calodendrum capense, in the western cape province of South Africa. Proposal of ‘Candidatus Liberibacter africanus subsp. capensis’. Int J Syst Evol Micrbiol 50:2119–2125CrossRefGoogle Scholar
  11. Halbert SE (2005) The discovery of huanglongbing in florida. In Proceedings of the second international citrus canker and huanglongbing research workshop, abstract H-3, Florida Citrus Mutual, OrlandoGoogle Scholar
  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nuc Acids Symp ser 41:95–98Google Scholar
  13. Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split by a molecular clock of mitochondria DNA. J Mol Evol 22:260Google Scholar
  14. Hocquellet A, Toorawa P, Bové JM, Garnier M (1999) Detection and identification of the two Candidatus Liberobacter species associated with citrus huanglongbing by PCR amplification of ribosomal protein genes of the β operon. Mol Cell Probe 13:373–379CrossRefGoogle Scholar
  15. Jagoueix S, Bové JM, Garnier M (1994) The phloem-limited bacterium of greening disease is a member of the α subdivision if the Proteobacteria. Int J Syst Bacteriol 44:379–386CrossRefPubMedGoogle Scholar
  16. Jagoueix S, Bové JM, Garnier M (1996) PCR detection of the two ‘Candidatus’ Liberobacter species associated with greening disease of citrus. Mol Cell Probe 10:43–50CrossRefGoogle Scholar
  17. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acid Res 30:3059–3066CrossRefGoogle Scholar
  18. Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land planrs: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2:e508CrossRefPubMedPubMedCentralGoogle Scholar
  19. Levin RA, Wagner WL, Hoch PC, Nepokroeff M, Pires JC, Zimmer EA, Sytsma KJ (2003) Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. Am J Bot 90:107–115CrossRefPubMedGoogle Scholar
  20. Liefting LW, Weir BS, Pennycook SR, Clover GRG (2009) ‘Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. Int J Syst Evol Micrbiol 59:2274–2276CrossRefGoogle Scholar
  21. McClean APD, Oberholzer PCJ (1965) Citrus psylla, a vector of the greening disease in sweet orange. S Afr J Agric Sci 8:297–298Google Scholar
  22. Moran VC (1968) The development of the citrus psylla, Trioza erytreae (del Guercio) (Homoptera: Psyllidae), in Citrus limon and four indigenous host plants. J Entomol Soc S Afr 31:391–402Google Scholar
  23. Nelson WR, Eveillard S, Dubrana MP, Bové JM (2015) Cryptic haplotypes of ‘Candidatus Liberibacter africanus’. J Plant Pathol 97:291–295Google Scholar
  24. Pang X, Liu C, Shi L, Lium RM, Liang D, Li H, Cherny SS, Chen S (2012) Utility of the trnH-psbA intergenic spacer region and its combinations as plant DNA barcodes: a meta-analysis. PLoS ONE 7(11):e48833. doi: 10.1371/journal.pone.0048833 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Phahladira MNB, Viljoen R, Pietersen G (2012) Widespread occurrence of “Candidatus Liberibacter africanus subspecies capensis’ in Calodendrum capense in South Africa. Eur J Plant Pathol 134:39–47CrossRefGoogle Scholar
  26. Pietersen G, Arrebola E, Breytenbach JHJ, Korsten L, Le Roux HF, la Grange H, Lopes SA, Meyer JB, Pretorius MC, Schwerdtfeger M, van Vuuren SP, Yamamoto P (2010) A survey for ‘Candidatus Liberibacter’ species in South Africa confirms the presence of only ‘Ca. L, africanus’ in commercial citrus. Plant Dis 94:244–249CrossRefGoogle Scholar
  27. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  28. Raddadi N, Gonella E, Camerota C, Pizzinat A, Tedeschi R, Crotti E, Mandrioli M, Attilio Bianco P, Daffonchio D, Alma A (2011) ‘Candidatus Liberibacter europeas’ sp. nov. that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves like an endophyte rather than a pathogen. Environ Microbiol 13:414–426CrossRefPubMedGoogle Scholar
  29. Roberts R, Steenkamp ET, Pietersen G (2015) Three novel lineages of ‘Candidatus Liberibacter africanus’ associated with native rutaceous hosts of Trioza erytreae in South Africa. Int J Sys Evol Micrbiol 65:723–731CrossRefGoogle Scholar
  30. Sang T, Grawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136CrossRefPubMedGoogle Scholar
  31. Saponari M, De Bac G, Breithaupt J, Loconsole G, Yokomi RK, Catalano L (2010) First report of ‘Candidatus Liberibacter asiaticus’ associated with huanglongbing in sweet orange in Ethiopia. Plant Dis 93:482CrossRefGoogle Scholar
  32. Secor GA, Rivera VV, Abad JA, Lee I-M, Clover GRG, Liefting LW, Li X, De Boer SH (2009) Association of ‘Candidatus Liberibacter solanacearum’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy and PCR. Plant Dis 93:574–583CrossRefGoogle Scholar
  33. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C content biases. Mol Biol Evol 9:678–687PubMedGoogle Scholar
  34. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Mega 6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst Bot 28:723–737Google Scholar
  37. Teixeira DC, Ayres J, Kitajima EW, Danet L, Jaqoueix-Eveillard S, Saillard C, Bové JM (2005) First report of a huanglongbing-like disease of citrus in São Paulo state, Brazil and association of a new Liberibacter species, ‘Candidatus Liberibacter americanus’, with the disease. Plant Dis 89:107CrossRefGoogle Scholar
  38. Teixeira DC, Eveillard S, Sirand-Pugnet P, Wulff A, Saillard C, Ayres AJ, Bové JM (2008) The tufB-secE-nusG-rplKAJL-rpoB gene cluster of the liberibacters: sequence comparisons, phylogeny and speciation. Int J Sys Evol Micrbiol 58:1414–1421CrossRefGoogle Scholar
  39. Waffo AFK, Coombes PH, Crouch NR, Mulholland DA, El Amin SMM, Smith PJ (2006) Acridone and furoquinoline alkaloids from Teclea gerrardii (Rutaceae: Toddioideae) of southern Africa. Phytochemistry 68:663–667CrossRefPubMedGoogle Scholar
  40. Werle E, Schneider C, Renner M, Völker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucl Acids Res 22:4354–4355CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
  2. 2.Plant Microbiology DivisionAgricultural Research Council-Plant Protection ResearchPretoriaSouth Africa

Personalised recommendations