Antonie van Leeuwenhoek

, Volume 109, Issue 12, pp 1605–1614 | Cite as

Wide distribution range of rhizobial symbionts associated with pantropical sea-dispersed legumes

  • Masaru Bamba
  • Sayuri Nakata
  • Seishiro Aoki
  • Koji Takayama
  • Juan Núñez-Farfán
  • Motomi Ito
  • Masaki Miya
  • Tadashi Kajita
Original Paper

Abstract

To understand the geographic distributions of rhizobia that associated with widely distributed wild legumes, 66 nodules obtained from 41 individuals including three sea-dispersed legumes (Vigna marina, Vigna luteola, and Canavalia rosea) distributed across the tropical and subtropical coastal regions of the world were studied. Partial sequences of 16S rRNA and nodC genes extracted from the nodules showed that only Bradyrhizobium and Sinorhizobium were associated with the pantropical legumes, and some of the symbiont strains were widely distributed over the Pacific. Horizontal gene transfer of nodulation genes were observed within the Bradyrhizobium and Sinorhizobium lineages. BLAST searches in GenBank also identified records of these strains from various legumes across the world, including crop species. However, one of the rhizobial strains was not found in GenBank, which implies the strain may have adapted to the littoral environment. Our results suggested that some rhizobia, which associate with the widespread sea-dispersed legume, distribute across a broad geographic range. By establishing symbiotic relationships with widely distributed rhizobia, the pantropical legumes may also be able to extend their range much further than other legume species.

Keywords

Pantropical plants with sea-drifted seeds Rhizobia biogeography Sea dispersal 

Supplementary material

10482_2016_761_MOESM1_ESM.pdf (803 kb)
Supplementary material 1 (PDF 804 kb)
10482_2016_761_MOESM2_ESM.pdf (180 kb)
Supplementary material 2 (PDF 181 kb)
10482_2016_761_MOESM3_ESM.pdf (130 kb)
Supplementary material 3 (PDF 130 kb)
10482_2016_761_MOESM4_ESM.pdf (586 kb)
Supplementary material 4 (PDF 587 kb)
10482_2016_761_MOESM5_ESM.pdf (12 kb)
Supplementary material 5 (PDF 13 kb)
10482_2016_761_MOESM6_ESM.pdf (244 kb)
Supplementary material 6 (PDF 244 kb)

References

  1. Abdelmoumen H, Filali-Maltouf A, Neyra M et al (1999) Effect of high salts concentrations on the growth of rhizobia and responses to added osmotica. J Appl Microbiol 86:889–898. doi:10.1046/j.1365-2672.1999.00727.x CrossRefGoogle Scholar
  2. Aoki S, Ito M, Iwasaki W (2013) From β- to α-proteobacteria: the origin and evolution of rhizobial nodulation genes nodIJ. Mol Biol Evol 30:2494–2508. doi:10.1093/molbev/mst153 CrossRefPubMedGoogle Scholar
  3. Bejarano A, Ramírez-Bahena M-H, Velázquez E, Peix A (2014) Vigna unguiculata is nodulated in Spain by endosymbionts of Genisteae legumes and by a new symbiovar (vignae) of the genus Bradyrhizobium. Syst Appl Microbiol 37:4–11. doi:10.1016/j.syapm.2014.04.003 CrossRefGoogle Scholar
  4. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  5. Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  6. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi:10.1080/10635150390235520 CrossRefPubMedGoogle Scholar
  7. Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  8. Hamann O (1984) Plants introduced into Galapagos not by man, but by El Niño? Noticias de Galapagos 39:15–19Google Scholar
  9. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174. doi:10.1007/BF02101694 CrossRefPubMedGoogle Scholar
  10. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Koppell JH, Parker MA (2012) Phylogenetic clustering of Bradyrhizobium symbionts on legumes indigenous to North America. Microbiology 158:2050–2059. doi:10.1099/mic.0.059238-0 CrossRefPubMedGoogle Scholar
  12. Li QQ, Wang ET, Chang YL et al (2011) Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int J Syst Evol Microbiol 61:1981–1988. doi:10.1099/ijs.0.025049-0 CrossRefPubMedGoogle Scholar
  13. Lynette KA, Daniel VM (2007) Soil biological fertility: a key to sustainable land use in agriculture. Springer Science & Business Media, NetherlandsGoogle Scholar
  14. Menna P, Hungria M, Barcellos FG et al (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29:315–332. doi:10.1016/j.syapm.2005.12.002 CrossRefPubMedGoogle Scholar
  15. Murata K, Zhang D (2014) Transport of bacterial cells toward the Pacific in Northern Hemisphere westerly winds. Atmos Environ 87:138–145. doi:10.1016/j.atmosenv.2013.12.038 CrossRefGoogle Scholar
  16. Norman AG (1942) Persistence of Rhizobium japonicum in soil. Am Soc Agron 34:499CrossRefGoogle Scholar
  17. Parker MA (1999a) Mutualism in Metapopulations of Legumes and Rhizobia. Am Nat 153:S48–S60. doi:10.1086/303211 CrossRefGoogle Scholar
  18. Parker MA (1999b) Relationships of Bradyrhizobia from the legumes Apios americana and Desmodium glutinosum. Appl Environ Microbiol 65:4914–4920PubMedPubMedCentralGoogle Scholar
  19. Parker MA (2012) Legumes select symbiosis island sequence variants in Bradyrhizobium. Mol Ecol 21:1769–1778. doi:10.1111/j.1365-294X.2012.05497.x
  20. Parker MA, Lafay B, Burdon JJ, Van Berkum P (2002) Conflicting phylogeographic patterns in rRNA and nifD indicate regionally restricted gene transfer in Bradyrhizobium. Microbiology 148:2557–2565CrossRefPubMedGoogle Scholar
  21. Parker MA, Malek W, Parker IM (2006) Growth of an invasive legume is symbiont limited in newly occupied habitats. Divers Distrib 12:563–571. doi:10.1111/j.1366-9516.2006.00255.x CrossRefGoogle Scholar
  22. Peix A, Ramírez-bahena MH, Velázquez E et al (2014) Critical reviews in plant sciences bacterial associations with legumes. Crit Rev Plant Sci 34:17–42. doi:10.1080/07352689.2014.897899 CrossRefGoogle Scholar
  23. Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Bio Rev 64(1):180–201CrossRefGoogle Scholar
  24. Ramírez-Bahena M-H, Chahboune R, Velázquez E et al (2013) Centrosema is a promiscuous legume nodulated by several new putative species and symbiovars of Bradyrhizobium in various American countries. Syst Appl Microbiol 36:392–400. doi:10.1016/j.syapm.2013.03.007 CrossRefPubMedGoogle Scholar
  25. Remigi P, Zhu J, Young JPW, Masson-Boivin C (2015) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24(1):63–75CrossRefPubMedGoogle Scholar
  26. Rivas R, Velázquez E, Willems A et al (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L. f.) Druce. Appl Environ Microbiol 68(11):5217–5222CrossRefPubMedPubMedCentralGoogle Scholar
  27. Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11. doi:10.1016/j.femsec.2005.02.015 CrossRefPubMedGoogle Scholar
  28. Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820. doi:10.1038/nrg3522 CrossRefPubMedGoogle Scholar
  29. Sonnante G, Spinosa A, Marangi A, Pignone D (1997) Isozyme and RAPD analysis of the genetic diversity within and between Vigna luteola and V. marina. Ann Bot 80:335–741. doi:10.1006/anbo.1997.0511 CrossRefGoogle Scholar
  30. Steenkamp ET, Stepkowski T, Przymusiak A, et al (2008) Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Mol Phylogenet Evol 48:1131–1144. doi:10.1016/j.ympev.2008.04.032
  31. Sy A, Giraud E, Jourand P et al (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220. doi:10.1128/JB.183.1.214 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Takayama K, Kajita T, Murata J, Tateishi Y (2006) Phylogeography and genetic structure of Hibiscus tiliaceus—speciation of a pantropical plant with sea-drifted seeds. Mol Ecol 15:2871–2881. doi:10.1111/j.1365-294X.2006.02963.x CrossRefPubMedGoogle Scholar
  33. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tavaré S (1986) Some probabilistic and statistical problems on the analysis of DNA sequences. Lect Math Life Sci 17:57–86Google Scholar
  35. Thompson JA (1960) Inhibition of nodule bacteria by an antibiotic from legume seed coats. Nature 187:619–620CrossRefPubMedGoogle Scholar
  36. Van Cauwenberghe J, Verstraete B, Lemaire B et al (2014) Population structure of root nodulating Rhizobium leguminosarum in Vicia cracca populations at local to regional geographic scales. Syst Appl Microbiol 37:613–621. doi:10.1016/j.syapm.2014.08.002 CrossRefPubMedGoogle Scholar
  37. Van Cauwenberghe J, Michiels J, Honnay O (2015) Effects of local environmental variables and geographical location on the genetic diversity and composition of Rhizobium leguminosarum nodulating Vicia cracca populations. Soil Biol Biochem 90:71–79. doi:10.1016/j.soilbio.2015.08.001 CrossRefGoogle Scholar
  38. Vatanparast M, Takayama K, Sousa MS et al (2011) Origin of Hawaiian endemic species of Canavalia (Fabaceae) from sea-dispersed species revealed by chloroplast and nuclear DNA sequences. J Jpn Bot 86:15–25Google Scholar
  39. Wernegreen JJ, Riley MA (1999) Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol Biol Evol 16:98–113CrossRefPubMedGoogle Scholar
  40. Yamaguchi N, Ichijo T, Sakotani A et al (2012) Global dispersion of bacterial cells on Asian dust. Sci Rep 2:1–6. doi:10.1038/srep00525 CrossRefGoogle Scholar
  41. Yao Y, Sui XH, Zhang XX et al (2015) Bradyrhizobium erythrophlei sp. nov. and Bradyrhizobium ferriligni sp. nov., isolated from effective nodules of Erythrophleum fordii. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.000183 Google Scholar
  42. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989 (table of contents) PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biology, Graduate School of ScienceChiba UniversityChiba-shiJapan
  2. 2.Department of General Systems Studies, Graduate School of Arts and Sciencesthe University of TokyoMeguro-kuJapan
  3. 3.Museum of Natural and Environmental History, ShizuokaShizuoka-shiJapan
  4. 4.Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
  5. 5.Natural History Museum & InstituteChiba-shiJapan
  6. 6.Iriomote Station, Tropical Biosphere Research CenterUniversity of the RyukyusYaeyama-gunJapan
  7. 7.Jumonji Junior and Senior High SchoolToshima-kuJapan

Personalised recommendations