Advertisement

Antonie van Leeuwenhoek

, Volume 109, Issue 6, pp 877–894 | Cite as

Wounds on Rapanea melanophloeos provide habitat for a large diversity of Ophiostomatales including four new species

  • Tendai Musvuugwa
  • Z. Wilhelm de Beer
  • Tuan A. Duong
  • Léanne L. Dreyer
  • Kenneth Oberlander
  • Francois Roets
Original Paper

Abstract

Rapanea melanophloeos, an important canopy tree in Afromontane forests, is commonly utilised for medicinal bark harvesting. Wounds created from these activities provide entrance for many fungi, including arthropod-associated members of the Ophiostomatales and Microascales (ophiostomatoid fungi). In this study we assessed the diversity of wound-associated Ophiostomatales on storm-damaged R. melanophloeos trees in the Afromontane forests of South Africa. Five species were identified based on micro-morphological and molecular phylogenetic analyses. These included Ophiostoma stenoceras and four newly described taxa Sporothrix itsvo sp. nov., S. rapaneae sp. nov., S. uta sp. nov. and O. noisomeae sp. nov. Four of these are members of the S. schenckiiO. stenoceras complex (O. stenoceras, S. itsvo sp. nov., S. rapaneae sp. nov., S. uta sp. nov.) while O. noisomeae groups basal in the Ophiostomatales alongside the S. lignivora complex and Graphilbum. In addition to other taxa known from this host, the present study shows that there is a rich, yet still poorly explored, diversity of Ophiostomatales associated with R. melanophloeos in Afromontane forests. More taxa are likely to be discovered with increased research effort. These must be assessed in terms of pathogenicity towards this ecologically and economically important tree.

Keywords

Afromonatane forests Ophiostoma Rapanea Sporothrix 

Notes

Acknowledgments

The authors thank the DST/NRF Centre of Excellence in Tree Health Biotechnology (CHTB) for financial support and the South African National Parks Board (SANPARKS) and Western Cape Nature Conservation Board for issuing the necessary collecting permits. We are also grateful to Netsai Machingambi, PC Benade and Dewidine van der Colff for assistance with field work and Jane Forrester for permission to work on trees in the Harold Porter National Botanical Garden.

References

  1. Aghayeva DN, Wingfield MJ, De Beer ZW, Kirisits T (2004) Two new Ophiostoma species with Sporothrix anamorphs from Austria and Azerbaijan. Mycologia 96:866–878CrossRefPubMedGoogle Scholar
  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  4. Brasier CM (2000) Intercontinental spread and continuing evolution of the Dutch elm disease pathogens. In: Dunn CP (ed) The elms: breeding, conservation and disease management. Kluwer Academic Publishers, Boston, pp 61–72CrossRefGoogle Scholar
  5. Brasier CM (2008) The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol 57:792–808CrossRefGoogle Scholar
  6. Brasier CM, Buck KW (2001) Rapid evolutionary changes in a globally invading fungal pathogen (Dutch elm disease). Biol Invasions 3:223–233CrossRefGoogle Scholar
  7. Castello JD, Leopold DJ, Smallidge PJ (1995) Pathogens, patterns and processes in forest ecosystems. Bioscience 45:16–24CrossRefGoogle Scholar
  8. Chen SF, Wingfield MJ, Roets F, Roux J (2013) A serious canker disease caused by Immersiporthe knoxdaviesiana gen. et sp. nov. (Cryphonectriaceae) on native Rapanea in South Africa. Plant Pathol 62:667–678CrossRefGoogle Scholar
  9. De Beer ZW, Wingfield MJ (2013) Emerging lineages in Ophiostomatales. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) Ophiostomatoid fungi: expanding frontiers, vol 12. CBS Biodiversity Series, Utrecht, pp 21–46Google Scholar
  10. De Beer ZW, Wingfield BD, Wingfield MJ (2003) The Ophiostoma piceae complex in the southern hemisphere: a phylogenetic study. Mycol Res 107:469–476CrossRefPubMedGoogle Scholar
  11. De Beer ZW, Seifert KA, Wingfield MJ (2013a) The ophiostomatoid fungi: their dual position in the Sordariomycetes. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) Ophiostomatoid fungi: expanding frontiers, vol 12. CBS Biodiversity, Utrecht, pp 1–19Google Scholar
  12. De Beer ZW, Seifert KA, Wingfield MJ (2013b) A nomenclature for ophiostomatoid genera and species in the Ophiostomatales and Microascales. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) Ophiostomatoid fungi: expanding frontiers, vol 12. CBS Biodiversity Series, Utrecht, pp 245–322Google Scholar
  13. De Meyer EM, De Beer ZW, Summerbell RC, Moharram AM, De Hoog GS, Vismer HF, Wingfield MJ (2008) Taxonomy and phylogeny of new wood- and soil-inhabiting Sporothrix species in the Ophiostoma stenocerasSporothrix schenckii complex. Mycologia 100:647–661CrossRefPubMedGoogle Scholar
  14. Duong TA, De Beer ZW, Wingfield BD, Wingfield MJ (2012) Phylogeny and taxonomy of species in the Grosmannia serpens complex. Mycologia 104:715–732CrossRefPubMedGoogle Scholar
  15. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118CrossRefPubMedGoogle Scholar
  16. Gibbs JN (1993) The biology of ophiostomatoid fungi causing sapstain in trees and freshly cut logs. In: Wingfield MJ, Seifert KA, Webber JF (eds) Ceratocystis and Ophiostoma: taxonomy, ecology, and pathogenicity. American Phytopathological Society Press, St. Paul, pp 153–160Google Scholar
  17. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedPubMedCentralGoogle Scholar
  18. Griffin HD (1968) The genus Ceratocystis in Ontario. Can J Bot 46:689–718CrossRefGoogle Scholar
  19. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  20. Harrington TC (1981) Cycloheximide sensitivity as a taxonomic character in Ceratocystis. Mycologia 73:1123–1129CrossRefGoogle Scholar
  21. Harrington TC (1993) Biology and taxonomy of fungi associated with bark beetles. In: Schowalter TD, Filip GM (eds) Beetle-pathogen interactions in conifer forests. Academic Press, New York, pp 37–58Google Scholar
  22. Harrington TC, Wingfield MJ (1998) The Ceratocystis species on conifers. Can J Bot 76:1446–1457Google Scholar
  23. Harrington TC, Fraedrich SW, Aghayeva DN (2008) Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104:399–404Google Scholar
  24. Heybroek HM (1993) Why bother about the elm? In: Sticklen MB, Sherald JL (eds) Dutch elm disease research. Cellular and molecular approaches. Springer, New York, pp 1–8CrossRefGoogle Scholar
  25. Hinds TE (1972) Insect transmission of Ceratocystis species associated with Aspen cankers. Phytopathology 62:221–225CrossRefGoogle Scholar
  26. Jacobs K, Wingfield MJ (2001) Leptographium species: tree pathogens, insect associates, and agents of blue-stain. APS press, St. PaulGoogle Scholar
  27. Käärik A (1960) Growth and sporulation of Ophiostoma and some other blueing fungi on synthetic media. Symb Bot Ups 16:1–168Google Scholar
  28. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298CrossRefPubMedGoogle Scholar
  29. Kubono T, Ito S (2002) Raffaelea quercivora sp. nov. associated with mass mortality of Japanese oak, and the ambrosia beetle (Platypus quercivorus). Mycoscience 43:255–260CrossRefGoogle Scholar
  30. Linnakoski R, De Beer ZW, Athiainen J, Sidorov E, Niemela P, Pappinen A, Wingfield MJ (2010) Ophiostoma spp. associated with pine and spruce-infesting bark beetles in Finland and Russia. Persoonia 25:72–93CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lubke RA, Mackenzie B (1996) Afromontane Forest. In: Low AB, Rebelo GA (eds) Vegetation of South Africa, Lesotho and Swaziland. Department of Environmental Affairs and Tourism, Pretoria, p 12Google Scholar
  32. Malloch D, Blackwell M (1993) Dispersal biology of the ophiostomatoid fungi. In: Wingfield MJ, Seifert KA, Webber JF (eds) Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. APS Press, St. Paul, pp 195–206Google Scholar
  33. Marais GJ, Wingfield MJ (1997) Ophiostoma protearum sp. nov. associated with Protea caffra infructescences. Can J Bot 75:362–367CrossRefGoogle Scholar
  34. Marais GJ, Wingfield MJ (2001) Ophiostoma africanum sp. nov., and a key to ophiostomatoid species from Protea infructescences. Mycol Res 105:240–246CrossRefGoogle Scholar
  35. Marimon R, Cano J, Gene J, Sutton DA, Kawasaki M, Guarro J (2007) Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J Clin Microbiol 45:3198–3206CrossRefPubMedPubMedCentralGoogle Scholar
  36. Moller WJ, Devay JE (1968) Insect transmission of Ceratocystis fimbriata in deciduous fruit orchards. Phytopathology 58:1499–1507Google Scholar
  37. Musvuugwa T, De Beer WZ, Duong TA, Dreyer LL, Oberlander KC, Roets F (2015) New species of Ophiostomatales from scolytine beetles in the Cape Floristic Region, including the discovery of the sexual state of Raffaelea. A Van Leeuw J Microb. doi: 10.1007/s10482-015-0547-7 Google Scholar
  38. Nkuekam GK, Jacobs K, De Beer ZW, Wingfield MJ, Roux J (2008) Ceratocystis and Ophiostoma species including three new taxa, associated with wounds on native South African trees. Fungal Divers 29:37–59Google Scholar
  39. Nkuekam GK, De Beer ZW, Wingfield MJ, Roux J (2012) A diverse assemblage of Ophiostoma species, including two new taxa on eucalypt trees in South Africa. Mycol Prog 11:515–533CrossRefGoogle Scholar
  40. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116CrossRefPubMedGoogle Scholar
  41. Pipe ND, Brasier CM, Buck KW (2000) Evolutionary relationships of the Dutch elm disease fungus Ophiostoma novo-ulmi to other Ophiostoma species investigated by restriction fragment length polymorphism analysis of the rDNA region. J Phytopathol 148:533–539CrossRefGoogle Scholar
  42. Posada D (2008) Selection of models of DNA evolution with jModelTest. In: Posada D (ed) Bioinformatics for DNA sequence analysis. Humana Press, Totowa, pp 93–112Google Scholar
  43. Robak H (1932) Investigations regarding fungi on Norwegian ground wood pulp and fungal infection at wood pulp mills. Nyt Mag Naturvid 71:185–330Google Scholar
  44. Roets F, de Beer ZW, Dreyer LL, Zipfel R, Crous PW, Wingfield MJ (2006) Multi-gene phylogeny for Ophiostoma spp. reveals two new species from Protea infructescences. Stud Mycol 55:199–212CrossRefPubMedPubMedCentralGoogle Scholar
  45. Roets F, Wingfield MJ, Crous PW, Dreyer LL (2007) Discovery of fungus-mite mutualism in a unique niche. Environ Entomol 36:1226–1237CrossRefPubMedGoogle Scholar
  46. Roets F, De Beer ZW, Wingfield MJ, Crous PW, Dreyer LL (2008) Ophiostoma gemellus and Sporothrix variecibatus from mites infesting Protea infructescences in South Africa. Mycologia 100:496–510CrossRefPubMedGoogle Scholar
  47. Roets F, Dreyer LL, Crous PW, Wingfield MJ (2009) Mite-mediated hyperphoretic dispersal of Ophiostoma spp. from the infructescences of South African Protea spp. Environ Entomol 38:143–152CrossRefPubMedGoogle Scholar
  48. Ronquist FR, Huelsenbeck JP (2003) MrBayes: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  49. Schirp A, Farrell RL, Kreber B (1999) Effect of New Zealand staining fungi on structural wood integrity of radiata pine. In: Proceedings of the 2nd New Zealand Sapstain symposium, Rotorua, New Zealand, 18–19 November, FRI Bull, vol 215, pp 99–104Google Scholar
  50. Seifert KA (1993) Sapstain of commercial lumber by species of Ophiostoma and Ceratocystis. In: Wingfield MJ, Seifert KA, Webber JF (eds) Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. American Phytopathological Society Press, St. Paul, pp 141–151Google Scholar
  51. Seifert SA, Wingfield MJ, Kendrick WB (1993) A nomenclature for described species of Ceratocystis, Ophiostoma, Ceratocystiopsis, Ceratostomella and Sphaeromella. In: Wingfield MJ, Seifert KA, Webber J (eds) Ceratocystis and Ophiostoma: Taxonomy. Ecology and Pathogenicity, American Phytopathological Society, St. Paul, pp 269–287Google Scholar
  52. Taylor JE, Lee S, Crous PW (2001) Biodiversity in the Cape Floral Kingdom: fungi occurring on Proteaceae. Mycol Res 105:1480–1484CrossRefGoogle Scholar
  53. Turpie JK, Heydenrych BJ, Lamberth SJ (2003) Economic value of terrestrial and marine biodiversity in the Cape Gloristic Region: implications for defining effective and socially optimal conservation strategies. Biol Conserv 112:233–251CrossRefGoogle Scholar
  54. VanWyk B, VanWyk P (1997) Field guide to trees of Southern Africa. Struik Publishers, Cape TownGoogle Scholar
  55. Vermeulen WJ, Geldenhuys CJ, Esler KJ (2012) Response of Ocotea bullata, Curtisia dentata and Rapanea melanophloeos to medicinal bark stripping in the southern Cape, South Africa: implications for sustainable use. South For 74:183–193Google Scholar
  56. Webber JF, Jacobs K, Wingfield MJ (1999) A re-examination of the vascular wilt pathogen of takamaka (Colophyllum inophyllum). Mycol Res 103:1588–1592CrossRefGoogle Scholar
  57. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A sequencing guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  58. Wingfield MJ, Seifert KA, Webber JA (1993) Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. APS Press, St PaulGoogle Scholar
  59. Zhou XD, De Beer ZW, Wingfield MJ (2006) DNA sequence comparisons of Ophiostoma spp., including Ophiostoma aurorae sp. nov., associated with pine bark beetles in South Africa. Stud Mycol 55:269–277CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tendai Musvuugwa
    • 1
  • Z. Wilhelm de Beer
    • 2
  • Tuan A. Duong
    • 3
  • Léanne L. Dreyer
    • 1
    • 4
  • Kenneth Oberlander
    • 5
    • 6
  • Francois Roets
    • 4
    • 6
  1. 1.Department of Botany and ZoologyStellenbosch UniversityStellenboschSouth Africa
  2. 2.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  3. 3.Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  4. 4.DST/NRF Centre of Excellence in Tree Health Biotechnology (CTHB), Forestry and Agricultural Biotechnology Institute (FABI), Department of Microbiology and Plant PathologyUniversity of PretoriaPretoriaSouth Africa
  5. 5.Institute of BotanyAcademy of SciencesPrůhoniceCzech Republic
  6. 6.Department of Conservation Ecology and EntomologyStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations