Antonie van Leeuwenhoek

, Volume 109, Issue 6, pp 737–753 | Cite as

Swarming motility is modulated by expression of the putative xenosiderophore transporter SppR-SppABCD in Pseudomonas aeruginosa PA14

  • Daniel PletzerEmail author
  • Yvonne Braun
  • Helge Weingart
Original Paper


In the present study, we characterised the putative peptide ABC transporter SppABCD, which is co-transcribed with the TonB-dependent receptor SppR in Pseudomonas aeruginosa PA14. However, our data show that this transporter complex is not involved in the uptake of peptides. The fact that the TonB-dependent receptor SppR is regulated by an iron starvation ECF sigma factor suggested that this transporter is probably involved in the uptake of xenosiderophores. Therefore, we screened culture supernatants of 23 siderophore-producing bacteria for their ability to induce the expression of the SppR-regulating ECF sigma factor. However, none of them had an effect on the expression of this ECF sigma factor. Since the spp operon is not expressed under standard laboratory conditions, we overexpressed it from plasmids in PA14, which led to an impairment of its swarming motility on semisolid agar. Since we excluded the possibility that the uptake of a culture medium component was responsible for the observed phenotype, we hypothesize that the Spp transport system is involved in the uptake of a compound from the periplasmic space or a compound secreted by P. aeruginosa. Furthermore, we found that rhamnolipid synthesis was decreased while biofilm and exopolysaccharide synthesis was slightly increased upon overexpression of the spp operon. Moreover, we observed an impact of spp overexpression on regulation of genes involved in siderophore and phenazine biosynthesis.


Biofilm Exopolysaccharide Pyoverdine Phenazine Rhamnolipid Siderophore 



We gratefully acknowledge Svetlana Dubiley and Konstantin Severinov for experimental testing of Microcin C uptake. Thanks to Daniel Boland for pre-screening environmental siderophore-producing bacteria. We appreciate the help of Michael Mourez for Biolog experiments. Furthermore, we acknowledge Mathias Winterhalter, Roland Benz, Thilo Köhler, and Malcolm Page for generous laboratory support and useful discussions.


The research leading to these results has received support from the Innovative Medicines Initiatives Joint Undertaking under Grant Agreement No. 115525, resources which are composed of financial contributions from the European Union’s seventh framework programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations companies in kind contribution.

Supplementary material

10482_2016_675_MOESM1_ESM.pdf (151 kb)
Supplementary material 1 (PDF 150 kb)
10482_2016_675_MOESM2_ESM.pdf (27 kb)
Supplementary material 2 (PDF 27 kb)


  1. Caiazza NC, Merritt JH, Brothers KM, O’Toole GA (2007) Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189:3603–3612. doi: 10.1128/JB.01685-06 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cao H, Baldini RL, Rahme LG (2001) Common mechanisms for pathogens of plants and animals. Annu Rev Phytopathol 39:259–284. doi: 10.1146/annurev.phyto.39.1.259 CrossRefPubMedGoogle Scholar
  3. Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14CrossRefPubMedGoogle Scholar
  4. Choi KH, Kumar A, Schweizer HP (2006) A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64:391–397. doi: 10.1016/j.mimet.2005.06.001 CrossRefPubMedGoogle Scholar
  5. Clinical and Laboratory Standards Institute (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In. CLSI document M7-A7, Clinical and Laboratory Standards Institute, Wayne, PAGoogle Scholar
  6. Colvin KM et al (2011) The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7:e1001264. doi: 10.1371/journal.ppat.1001264 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322CrossRefPubMedGoogle Scholar
  8. de Jong A, Pietersma H, Cordes M, Kuipers OP, Kok J (2012) PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 13:299. doi: 10.1186/1471-2164-13-299 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Friedman L, Kolter R (2004) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51:675–690CrossRefPubMedGoogle Scholar
  10. Ghafoor A, Hay ID, Rehm BH (2011) Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 77:5238–5246. doi: 10.1128/AEM.00637-11 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gooderham WJ, Hancock RE (2009) Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol Rev 33:279–294. doi: 10.1111/j.1574-6976.2008.00135.x CrossRefPubMedGoogle Scholar
  12. Govan JR, Nelson JW (1992) Microbiology of lung infection in cystic fibrosis. Br Med Bull 48:912–930PubMedGoogle Scholar
  13. Hancock RE, Speert DP (2000) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat 3:247–255. doi: 10.1054/drup.2000.0152 CrossRefPubMedGoogle Scholar
  14. Harshey RM (1994) Bees aren’t the only ones: swarming in gram-negative bacteria. Mol Microbiol 13:389–394CrossRefPubMedGoogle Scholar
  15. Harshey RM, Matsuyama T (1994) Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci USA 91:8631–8635CrossRefPubMedPubMedCentralGoogle Scholar
  16. He J et al (2004) The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci USA 101:2530–2535CrossRefPubMedPubMedCentralGoogle Scholar
  17. Helmann JD (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110CrossRefPubMedGoogle Scholar
  18. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86CrossRefPubMedGoogle Scholar
  19. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65. doi: 10.1128/MMBR.05007-11 CrossRefPubMedGoogle Scholar
  20. Köhler T, Curty LK, Barja F, van Delden C, Pechere JC (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996CrossRefPubMedPubMedCentralGoogle Scholar
  21. Köhler T, Ouertatani-Sakouhi H, Cosson P, van Delden C (2014) QsrO a novel regulator of quorum-sensing and virulence in Pseudomonas aeruginosa. PLoS ONE 9:e87814. doi: 10.1371/journal.pone.0087814 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kovach ME et al (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176CrossRefPubMedGoogle Scholar
  23. Lai S, Tremblay J, Deziel E (2009) Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol 11:126–136. doi: 10.1111/j.1462-2920.2008.01747.x CrossRefPubMedGoogle Scholar
  24. Lau GW, Ran H, Kong F, Hassett DJ, Mavrodi D (2004) Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immunol 72:4275–4278. doi: 10.1128/IAI.72.7.4275-4278.2004 CrossRefGoogle Scholar
  25. Liberati NT et al (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA 103:2833–2838. doi: 10.1073/pnas.0511100103 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Llamas MA, Mooij MJ, Sparrius M, Vandenbroucke-Grauls CM, Ratledge C, Bitter W (2008) Characterization of five novel Pseudomonas aeruginosa cell-surface signalling systems. Mol Microbiol 67:458–472. doi: 10.1111/j.1365-2958.2007.06061.x CrossRefPubMedGoogle Scholar
  27. Llamas MA, van der Sar A, Chu BC, Sparrius M, Vogel HJ, Bitter W (2009) A novel extracytoplasmic function (ECF) sigma factor regulates virulence in Pseudomonas aeruginosa. PLoS Pathog 5:e1000572. doi: 10.1371/journal.ppat.1000572 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Llamas MA, Imperi F, Visca P, Lamont IL (2014) Cell-surface signaling in Pseudomonas: stress responses, iron transport, and pathogenicity. FEMS Microbiol Rev 38:569–597. doi: 10.1111/1574-6976.12078 CrossRefPubMedGoogle Scholar
  29. Luckett JC et al (2012) A novel virulence strategy for Pseudomonas aeruginosa mediated by an autotransporter with arginine-specific aminopeptidase activity. PLoS Pathog 8:e1002854. doi: 10.1371/journal.ppat.1002854 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mahren S, Enz S, Braun V (2002) Functional interaction of region 4 of the extracytoplasmic function sigma factor FecI with the cytoplasmic portion of the FecR transmembrane protein of the Escherichia coli ferric citrate transport system. J Bacteriol 184:3704–3711CrossRefPubMedPubMedCentralGoogle Scholar
  31. Merritt JH, Brothers KM, Kuchma SL, O’Toole GA (2007) SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol 189:8154–8164. doi: 10.1128/JB.00585-07 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  33. Missiakas D, Raina S (1998) The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28:1059–1066CrossRefPubMedGoogle Scholar
  34. Murray TS, Ledizet M, Kazmierczak BI (2010) Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. J Med Microbiol 59:511–520. doi: 10.1099/jmm.0.017715-0 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nadal Jimenez P et al (2010) Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions. Microbiology 156:49–59. doi: 10.1099/mic.0.030973-0 CrossRefPubMedGoogle Scholar
  36. Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60. doi: 10.1146/annurev.micro.112408.134247 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Novikova M et al (2007) The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C. J Bacteriol 189:8361–8365. doi: 10.1128/JB.01028-07 CrossRefPubMedPubMedCentralGoogle Scholar
  38. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304CrossRefPubMedGoogle Scholar
  39. Overhage J, Bains M, Brazas MD, Hancock RE (2008) Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol 190:2671–2679. doi: 10.1128/JB.01659-07 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pletzer D et al (2014) High-throughput screening of dipeptide utilization mediated by the ABC transporter DppBCDF and its substrate-binding proteins DppA1-A5 in Pseudomonas aeruginosa. PLoS ONE 9:e111311. doi: 10.1371/journal.pone.0111311 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pletzer D et al (2015) The Pseudomonas aeruginosa PA14 ABC transporter NppA1A2BCD is required for uptake of peptidyl nucleoside antibiotics. J Bacteriol 197:2217–2228. doi: 10.1128/JB.00234-15 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Poole K, McKay GA (2003) Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front Biosci 8:d661–d686CrossRefPubMedGoogle Scholar
  43. Quinn JP (1998) Clinical problems posed by multiresistant nonfermenting gram-negative pathogens. Clin Infect Dis 27(Suppl 1):S117–S124CrossRefPubMedGoogle Scholar
  44. Saier MH Jr, Reddy VS, Tamang DG, Vastermark A (2014) The transporter classification database. Nucleic Acids Res 42:D251–D258. doi: 10.1093/nar/gkt1097 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Schalk IJ, Guillon L (2013) Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 15:1661–1673. doi: 10.1111/1462-2920.12013 CrossRefPubMedGoogle Scholar
  46. Schauer K, Rodionov DA, de Reuse H (2008) New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem Sci 33:330–338. doi: 10.1016/j.tibs.2008.04.012 CrossRefPubMedGoogle Scholar
  47. Schenk A, Weingart H, Ullrich MS (2008) Extraction of high-quality bacterial RNA from infected leaf tissue for bacterial in planta gene expression analysis by multiplexed fluorescent Northern hybridization. Mol Plant Pathol 9:227–235. doi: 10.1111/j.1364-3703.2007.00452.x CrossRefPubMedGoogle Scholar
  48. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedGoogle Scholar
  49. Schweizer HP, Chuanchuen R (2001) Small broad-host-range lacZ operon fusion vector with low background activity. Biotechniques 31:1258, 1260, 1262Google Scholar
  50. Schweizer HP, Hoang TT (1995) An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158:15–22CrossRefPubMedGoogle Scholar
  51. Siegmund I, Wagner F (1991) New method for detecting rhamnolipids excreted by pseudomonas species during growth on mineral agar. Biotechnol Tech 5:265–268. doi: 10.1007/Bf02438660 CrossRefGoogle Scholar
  52. Spiers AJ, Buckling A, Rainey PB (2000) The causes of Pseudomonas diversity. Microbiology 146(Pt 10):2345–2350CrossRefPubMedGoogle Scholar
  53. Strehmel J, Neidig A, Nusser M, Geffers R, Brenner-Weiss G, Overhage J (2015) Sensor kinase PA4398 modulates swarming motility and biofilm formation in Pseudomonas aeruginosa PA14. Appl Environ Microbiol 81:1274–1285. doi: 10.1128/AEM.02832-14 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Thoma S, Schobert M (2009) An improved Escherichia coli donor strain for diparental mating. FEMS Microbiol Lett 294:127–132CrossRefPubMedGoogle Scholar
  55. Tremblay J, Deziel E (2010) Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics 11:587. doi: 10.1186/1471-2164-11-587 CrossRefPubMedPubMedCentralGoogle Scholar
  56. West SE, Schweizer HP, Dall C, Sample AK, Runyen-Janecky LJ (1994) Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148:81–86CrossRefPubMedGoogle Scholar
  57. Wilson R, Sykes DA, Watson D, Rutman A, Taylor GW, Cole PJ (1988) Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun 56:2515–2517PubMedPubMedCentralGoogle Scholar
  58. Winsor GL et al (2011) Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 39:D596–D600. doi: 10.1093/nar/gkq869 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wurtzel O et al (2012) The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature. PLoS Pathog 8:e1002945. doi: 10.1371/journal.ppat.1002945 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yeung AT et al (2009) Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J Bacteriol 191:5592–5602. doi: 10.1128/JB.00157-09 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yeung AT, Parayno A, Hancock RE (2012) Mucin promotes rapid surface motility in Pseudomonas aeruginosa. MBio. doi: 10.1128/mBio.00073-12 PubMedPubMedCentralGoogle Scholar
  62. Zumaquero A, Macho AP, Rufian JS, Beuzon CR (2010) Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant. J Bacteriol 192:4474–4488. doi: 10.1128/JB.00260-10 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Life Sciences and ChemistryJacobs University BremenBremenGermany
  2. 2.R.E.W. Hancock Laboratory, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations