Advertisement

Antonie van Leeuwenhoek

, Volume 109, Issue 4, pp 589–601 | Cite as

Novel ophiostomatalean fungi from galleries of Cyrtogenius africus (Scolytinae) infesting dying Euphorbia ingens

  • Johannes Alwyn van der Linde
  • Diana L. Six
  • Wilhelm Z. De Beer
  • Michael J. Wingfield
  • Jolanda RouxEmail author
Original Paper

Abstract

Euphorbia ingens trees have been dying in large numbers in the Limpopo Province of South Africa for approximately 15 years. The ambrosia beetle Cyrtogenius africus is often found infesting diseased and dying trees. The aim of this study was to identify the ophiostomatoid fungi occurring in the galleries of C. africus. Logs infested with this beetle were collected from the KwaZulu-Natal, Limpopo, Mpumalanga, and North West Provinces of South Africa. Fungi belonging to the Ophiostomatales were identified based on morphology and comparison of sequence data for the β-tubulin, ITS1-5.8S-ITS2 and LSU gene regions. A novel species of Ophiostoma and a novel genus in the Ophiostomatales were identified. Inoculation studies with these fungi produced lesions in the branches of healthy E. ingens trees.

Keywords

Ophiostoma Ophiostomataceae Ophiostomatalean fungi Ophiostomatales Scolytinae 

Notes

Acknowledgments

We thank the Department of Science and Technology (DST), National Research Foundation (NRF) and DST/NRF Centre of Excellence in Tree Health Biotechnology (CTHB), for financial support; Dr. Hugh Glen for assistance with Latin names and Dr. Roger Beaver for assistance with beetle identification. Mr. Gert van der Merwe, Mr. Thomas Ndala, Mr. Henk Fourie and Buyskop Game Farm are thanked for permission to use their properties for field studies.

References

  1. Batra LR (1967) Ambrosia fungi: a taxonomic revision, and nutritional studies of some species. Mycologia 59:976–1017CrossRefGoogle Scholar
  2. Beaver RA (1989) Insect-fungus relationships in the bark and ambrosia beetles. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic Press, London, pp 121–143CrossRefGoogle Scholar
  3. Carrillo D, Duncan RE, Ploetz JN, Campbell AF, Ploetz RC, Peña JE (2014) Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol 63:54–62CrossRefGoogle Scholar
  4. De Beer ZW, Wingfield MJ (2013) Emerging lineages in the Ophiostomatales. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) The Ophiostomatoid fungi: expanding frontiers. CBS Biodiversity Series 12. CBS Fungal Diversity Centre, Utrecht, pp 21–46Google Scholar
  5. De Beer ZW, Harrington TC, Vismer HF, Wingfield BD, Wingfield MJ (2003) Phylogeny of the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 95:434–441CrossRefPubMedGoogle Scholar
  6. De Beer ZW, Seifert KA, Wingfield MJ (2013) The ophiostomatoid fungi: their dual position in the Sordariomycetes. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) The Ophiostomatoid fungi: expanding frontiers. CBS Biodiversity Series 12. CBS Fungal Diversity Centre, Utrecht, pp 1–19Google Scholar
  7. De Beer ZW, Duong TA, Barnes I, Wingfield BD, Wingfield MJ (2014) Redefining Ceratocystis and allied genera. Stud Mycol 79:187–219CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dowding P (1984) The evolution of insect-fungus relationships in the primary invasion of forest timber. In: Anderson JM, Raynor ADM, Walton DWH (eds) Invertebrate-microbial interactions. Cambridge University Press, New York, pp 133–153Google Scholar
  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  10. Fraedrich SW, Harrington TC, Rabaglia RJ et al (2008) A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis 92:215–224CrossRefGoogle Scholar
  11. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedPubMedCentralGoogle Scholar
  12. Harrington TC (2005) Ecology and evolution of mycophagous bark beetles and their fungal partners. In: Vega FE, Blackwell M (eds) Insect-fungal associations. Oxford University Press, New York, pp 257–291Google Scholar
  13. Harrington TC, Fraedrich SW, Aghayeva DN (2008) Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104:399–404Google Scholar
  14. Hausner G, Reid J, Klassen GR (1993) On the subdivision of Ceratocystis s.l., based on partial ribosomal DNA sequences. Can J Botany 71:52–63CrossRefGoogle Scholar
  15. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  16. Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect-fungus symbiosis threatens naive forest ecosystems. Proc R Soc B 278:2866–2873CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kamata N, Esaki K, Kato K, Igeta Y, Wada K (2002) Potential impact of global warming on deciduous oak dieback caused by ambrosia fungus Raffaelea sp. carried by ambrosia beetle Platypus quercivorus (Coleoptera: Platypodidae) in Japan. B Entomol Res 92:119–126Google Scholar
  18. Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, Hulcr J (2015) The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J 9:126–138CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kubono T, Ito S (2002) Raffaelea quercivora sp. nov. associated with mass mortality of Japanese oak, and the ambrosia beetle (Platypus quercivorus). Mycoscience 43:255–260CrossRefGoogle Scholar
  21. Malan R (2006) Aspects of population biology and ecology of Euphorbia ingens on the Mokopane game breeding centre in the Limpopo province of South Africa. Tech Nature Conservation, Department of Nature Conservation, Tshwane University of TechnologyGoogle Scholar
  22. Malloch D, Blackwell M (1993) Dispersal biology of the ophiostomatoid fungi. In: Wingfield MJ, Seifert KA, Webber JF (eds) Ceratocystis and Ophiostoma. The American Phytopathological Society Press, St. Paul, pp 195–206Google Scholar
  23. Mrázková M, Černý K, Tomšovský M, Strnadová V (2011) Phytophthora plurivora T. Jung & T.I. Burgess and other Phytophthora species causing important diseases of ericaceous plants in the Czech Republic. Plant Protec Sci 47:13–19Google Scholar
  24. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116CrossRefPubMedGoogle Scholar
  25. Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206CrossRefPubMedGoogle Scholar
  26. Pfenning L, Oberwinkler F (1993) Ophiostoma bragantinum n. sp., a possible teleomorph of Sporothrix inflata, found in Brazil. Mycotaxon 46:381–385Google Scholar
  27. Ploetz RC, Hulcr J, Wingfield MJ, De Beer ZW (2013) Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Dis 97:856–872CrossRefGoogle Scholar
  28. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  29. Ranger CM, Schultz PB, Frank SD, Chong JH, Reding ME (2015) Non-native ambrosia beetles as opportunistic exploiters of living but weakened trees. PLoS ONE 10:1–21. doi: 10.1371/journal.pone.0131496 CrossRefGoogle Scholar
  30. Réblová M, Gams W, Seifert KA (2011) Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales. Stud Mycol 68:163–191CrossRefPubMedPubMedCentralGoogle Scholar
  31. Roets F, de Beer ZW, Wingfield MJ, Crous PW, Dreyer LL (2008) Ophiostoma gemellus and Sporothrix variecibatus from mites infesting Protea infructescences in South Africa. Mycologia 100:496–510CrossRefPubMedGoogle Scholar
  32. Roux J, Malan R, Howitt M, Six D, Wingfield MJ (2008) Discovery of new fungi associated with the decline and death of Euphorbia ingens in the Limpopo province of South Africa. S Afr J Bot 74:377–378CrossRefGoogle Scholar
  33. Shapiro SS, Wilk MB (1965) Analysis of variance test for normality (complete samples). Biometrika 52:591–611CrossRefGoogle Scholar
  34. Six DL (2012) Ecological and evolutionary determinants of bark beetle-fungus symbioses. Insects 3:339–366CrossRefPubMedPubMedCentralGoogle Scholar
  35. Spatafora JW, Blackwell M (1994) The polyphyletic origins of ophiostomatoid fungi. Mycol Res 98:1–9CrossRefGoogle Scholar
  36. Swofford DL (2002) PAUP* 4.0b10: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  37. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) Version 4.0. Mol Biol Evol 8:1596–1599CrossRefGoogle Scholar
  38. Van der Linde JA, Six DL, Wingfield MJ, Roux J (2011a) Lasiodiplodia species associated with dying Euphorbia ingens in South Africa. South Forests 73:165–173CrossRefGoogle Scholar
  39. Van der Linde JA, Six DL, Wingfield MJ, Roux J (2011b) New species of Gondwanamyces from dying Euphorbia trees in South Africa. Mycologia 104:574–584CrossRefPubMedGoogle Scholar
  40. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified Ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246PubMedPubMedCentralGoogle Scholar
  41. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a sequencing guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  42. Wingfield MJ, Seifert KA, Webber J (1993) Ceratocystis and Ophiostoma: taxonomy, ecology and pathogenicity. The American Phytopathological Society Press, St. PaulGoogle Scholar
  43. Wood SL (1982) The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6Google Scholar
  44. Zipfel RD, De Beer ZW, Jacobs K, Wingfield BD, Wingfield MJ (2006) Multi-gene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Stud Mycol 55:75–97CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Johannes Alwyn van der Linde
    • 1
  • Diana L. Six
    • 2
  • Wilhelm Z. De Beer
    • 1
  • Michael J. Wingfield
    • 1
  • Jolanda Roux
    • 1
    Email author
  1. 1.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  2. 2.College of Forestry and Conservation, Department of Ecosystem and Conservation SciencesThe University of MontanaMissoulaUSA

Personalised recommendations