Advertisement

Antonie van Leeuwenhoek

, Volume 109, Issue 4, pp 565–587 | Cite as

A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov.

  • Radhey S. Gupta
  • Sohail Naushad
  • Reena Fabros
  • Mobolaji Adeolu
Original Paper

Abstract

The evolutionary interrelationships between the archaeal organisms which comprise the class Halobacteria have proven difficult to elucidate using traditional phylogenetic tools. The class currently contains three orders. However, little is known about the family level relationships within these orders. In this work, we have completed a comprehensive comparative analysis of 129 sequenced genomes from members of the class Halobacteria in order to identify shared molecular characteristics, in the forms of conserved signature insertions/deletions (CSIs) and conserved signature proteins (CSPs), which can provide reliable evidence, independent of phylogenetic trees, that the species from the groups in which they are found are specifically related to each other due to common ancestry. Here we present 20 CSIs and 31 CSPs which are unique characteristics of infra-order level groups of genera within the class Halobacteria. We also present 40 CSIs and 234 CSPs which are characteristic of Haloarcula, Halococcus, Haloferax, or Halorubrum. Importantly, the CSIs and CSPs identified here provide evidence that the order Haloferacales contains two main groups, one consisting of Haloferax and related genera supported by four CSIs and five CSPs and the other consisting of Halorubrum and related genera supported by four CSPs. We have also identified molecular characteristics that suggest that the polyphyletic order Halobacteriales contains at least two large monophyletic clusters of organisms in addition to the polyphyletic members of the order, one cluster consisting of Haloarcula and related genera supported by ten CSIs and nineteen CSPs and the other group consisting of the members of the genus Halococcus supported by nine CSIs and 23 CSPs. We have also produced a highly robust phylogenetic tree based on the concatenated sequences of 766 proteins which provide additional support for the relationships identified by the CSIs and CSPs. On the basis of the phylogenetic analyses and the identified conserved molecular characteristics presented here, we propose a division of the order Haloferacales into two families, an emended family Haloferacaceae and Halorubraceae fam. nov. and a division of the order Halobacteriales into three families, an emended family Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov.

Keywords

Halobacteria Halobacteriales Haloferacales Phylogeny Taxonomy Conserved signature indel Conserved signature protein 

Supplementary material

10482_2016_660_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2117 kb)

References

  1. Ahmod NZ, Gupta RS, Shah HN (2011) Identification of a Bacillus anthracis specific indel in the yeaC gene and development of a rapid pyrosequencing assay for distinguishing B. anthracis from the B. cereus group. J Microbiol Methods 87(3):278–285CrossRefPubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amoozegar MA, Makhdoumi-Kakhki A, Shahzadeh Fazeli SA, Azarbaijani R, Ventosa A (2012) Halopenitus persicus gen. nov., sp. nov., an archaeon from an inland salt lake. Int J Syst Evol Microbiol 62(Pt 8):1932–1936CrossRefPubMedGoogle Scholar
  4. Amoozegar MA, Makhdoumi-Kakhki A, Mehrshad M, Fazeli SA, Sproer C, Ventosa A (2014) Halorientalis persicus sp. nov., an extremely halophilic archaeon isolated from a salt lake and emended description of the genus Halorientalis. Int J Syst Evol Microbiol 64(Pt 3):940–944CrossRefPubMedGoogle Scholar
  5. Andam CP, Harlow TJ, Papke RT, Gogarten JP (2012) Ancient origin of the divergent forms of leucyl-tRNA synthetases in the Halobacteriales. BMC Evol Biol 12:85CrossRefPubMedPubMedCentralGoogle Scholar
  6. Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58(Pt 1):215–220CrossRefPubMedGoogle Scholar
  7. Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Weng RS, Gan RR et al (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14(11):2221–2234CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bhandari V, Gupta RS (2014) Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. Anton Leeuw Int J G 105(1):143–168CrossRefGoogle Scholar
  9. Boucher Y, Douady CJ, Sharma AK, Kamekura M, Doolittle WF (2004) Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol 186(12):3980–3990CrossRefPubMedPubMedCentralGoogle Scholar
  10. Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodriguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57(Pt 2):387–392CrossRefPubMedGoogle Scholar
  11. Burns DG, Janssen PH, Itoh T, Kamekura M, Echigo A, Dyall-Smith ML (2010a) Halonotius pteroides gen. nov., sp. nov., an extremely halophilic archaeon recovered from a saltern crystallizer. Int J Syst Evol Microbiol 60(Pt 5):1196–1199CrossRefPubMedGoogle Scholar
  12. Burns DG, Janssen PH, Itoh T, Minegishi H, Usami R, Kamekura M, Dyall-Smith ML (2010b) Natronomonas moolapensis sp. nov., non-alkaliphilic isolates recovered from a solar saltern crystallizer pond, and emended description of the genus Natronomonas. Int J Syst Evol Microbiol 60(Pt 5):1173–1176CrossRefPubMedGoogle Scholar
  13. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552CrossRefPubMedGoogle Scholar
  14. Ciccarelli FD, Doerks T, Von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311(5765):1283–1287CrossRefPubMedGoogle Scholar
  15. Cole J, Wang Q, Fish J, Chai B, McGarrell D, Sun Y, Brown C, Porras-Alfaro A, Kuske C, Tiedje J (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(1):D633CrossRefPubMedGoogle Scholar
  16. Cui HL, Zhang WJ (2014) Salinigranum rubrum gen. nov., sp. nov., a member of the family Halobacteriaceae isolated from a marine solar saltern. Int J Syst Evol Microbiol 64(Pt 6):2029–2033CrossRefPubMedGoogle Scholar
  17. Cui HL, Zhou PJ, Oren A, Liu SJ (2009) Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 13(1):31–37CrossRefPubMedGoogle Scholar
  18. Cui HL, Gao X, Li XY, Xu XW, Zhou YG, Liu HC, Zhou PJ (2010a) Halosarcina limi sp. nov., a halophilic archaeon from a marine solar saltern, and emended description of the genus Halosarcina. Int J Syst Evol Microbiol 60(Pt 10):2462–3466CrossRefPubMedGoogle Scholar
  19. Cui HL, Gao X, Sun FF, Dong Y, Xu XW, Zhou YG, Liu HC, Oren A, Zhou PJ (2010b) Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. Int J Syst Evol Microbiol 60(Pt 6):1366–1371CrossRefPubMedGoogle Scholar
  20. Cui HL, Gao X, Yang X, Xu XW (2010c) Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 14(6):493–499CrossRefPubMedGoogle Scholar
  21. Cui HL, Sun FF, Gao X, Dong Y, Xu XW, Zhou YG, Liu HC, Oren A, Zhou PJ (2010d) Haladaptatus litoreus sp. nov., an extremely halophilic archaeon from a marine solar saltern, and emended description of the genus Haladaptatus. Int J Syst Evol Microbiol 60(Pt 5):1085–1089CrossRefPubMedGoogle Scholar
  22. Cui HL, Yang X, Gao X, Li XY, Xu XW, Zhou YG, Liu HC, Zhou PJ (2010e) Halogeometricum rufum sp. nov., a halophilic archaeon from a marine solar saltern, and emended description of the genus Halogeometricum. Int J Syst Evol Microbiol 60(Pt 11):2613–2617CrossRefPubMedGoogle Scholar
  23. Cui HL, Gao X, Yang X, Xu XW (2011a) Halolamina pelagica gen. nov., sp. nov., a new member of the family Halobacteriaceae. Int J Syst Evol Microbiol 61(Pt 7):1617–1621CrossRefPubMedGoogle Scholar
  24. Cui HL, Yang X, Gao X, Xu XW (2011b) Halobellus clavatus gen. nov., sp. nov. and Halorientalis regularis gen. nov., sp. nov., two new members of the family Halobacteriaceae. Int J Syst Evol Microbiol 61(Pt 11):2682–2689CrossRefPubMedGoogle Scholar
  25. Cui HL, Yang X, Gao X, Xu XW (2011c) Halogranum gelatinilyticum sp. nov. and Halogranum amylolyticum sp. nov., isolated from a marine solar saltern, and emended description of the genus Halogranum. Int J Syst Evol Microbiol 61(Pt 4):911–915CrossRefPubMedGoogle Scholar
  26. Cui HL, Mou YZ, Yang X, Zhou YG, Liu HC, Zhou PJ (2012) Halorubellus salinus gen. nov., sp. nov. and Halorubellus litoreus sp. nov., novel halophilic archaea isolated from a marine solar saltern. Syst Appl Microbiol 35(1):30–34CrossRefPubMedGoogle Scholar
  27. Echigo A, Minegishi H, Shimane Y, Kamekura M, Itoh T, Usami R (2013) Halomicroarcula pellucida gen. nov., sp. nov., a non-pigmented, transparent-colony-forming, halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 63(Pt 10):3556–3562CrossRefPubMedGoogle Scholar
  28. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461CrossRefPubMedGoogle Scholar
  29. Enache M, Itoh T, Fukushima T, Usami R, Dumitru L, Kamekura M (2007) Phylogenetic relationships within the family Halobacteriaceae inferred from rpoB ‘ gene and protein sequences. Int J Syst Evol Microbiol 57:2289–2295CrossRefPubMedGoogle Scholar
  30. Gao B, Gupta R (2007) Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis. BMC Genomics 8(1):86CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gao B, Gupta RS (2012a) Microbial systematics in the post-genomics era. Anton Leeuw Int J G 101(1):45–54CrossRefGoogle Scholar
  32. Gao B, Gupta RS (2012b) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76(1):66–112CrossRefPubMedPubMedCentralGoogle Scholar
  33. Goh F, Leuko S, Allen MA, Bowman JP, Kamekura M, Neilan BA, Burns BP (2006) Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. Int J Syst Evol Microbiol 56(6):1323–1329CrossRefPubMedGoogle Scholar
  34. Grant WD, Kamekura M, McGenity TJ, Ventosa A (2001) Class III. Halobacteria class. nov. In: Boone, Castenholz RW, Garrity GM, Bergey DH (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New YorkGoogle Scholar
  35. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321CrossRefPubMedGoogle Scholar
  36. Gupta RS (2014) Identification of conserved indels that are useful for classification and evolutionary studies methods in microbiology, vol 41. Academic Press, OxfordGoogle Scholar
  37. Gupta RS, Lali R (2013) Molecular signatures for the phylum Aquificae and its different clades: proposal for division of the phylum Aquificae into the emended order Aquificales, containing the families Aquificaceae and Hydrogenothermaceae, and a new order Desulfurobacteriales ord. nov., containing the family Desulfurobacteriaceae. Anton Leeuw Int J G 104(3):349–368CrossRefGoogle Scholar
  38. Gupta RS, Mok A (2007) Phylogenomics and signature proteins for the Alphaproteobacteria and its main groups. BMC Microbiol 7(1):106CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gupta RS, Naushad S, Baker S (2015) Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 65(Pt 3):1050–1069CrossRefPubMedGoogle Scholar
  40. Han D, Cui HL (2014) Halosimplex pelagicum sp. nov. and Halosimplex rubrum sp. nov., isolated from salted brown alga Laminaria, and emended description of the genus Halosimplex. Int J Syst Evol Microbiol 64(Pt 1):169–173CrossRefPubMedGoogle Scholar
  41. Hartman AL, Norais C, Badger JH, Delmas S, Haldenby S, Madupu R, Robinson J, Khouri H, Ren Q, Lowe TM et al (2010) The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS One 5(3):e9605CrossRefPubMedPubMedCentralGoogle Scholar
  42. Howard-Azzeh M, Shamseer L, Schellhorn HE, Gupta RS (2014) Phylogenetic analysis and molecular signatures defining a monophyletic clade of heterocystous cyanobacteria and identifying its closest relatives. Photosynth Res 122(2):171–185CrossRefPubMedGoogle Scholar
  43. Inoue K, Itoh T, Ohkuma M, Kogure K (2011) Halomarina oriensis gen. nov., sp. nov., a halophilic archaeon isolated from a seawater aquarium. Int J Syst Evol Microbiol 61(Pt 4):942–946CrossRefPubMedGoogle Scholar
  44. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23(10):403CrossRefPubMedGoogle Scholar
  45. Jones AL (2012) The future of taxonomy. In: Gadd GM, Sariaslani S (eds) Advances in applied microbiology, vol 80, 1st edn. Academic Press Inc, San Diego, pp 23–35Google Scholar
  46. Klenk HP, Goker M (2010) En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 33(4):175–182CrossRefPubMedGoogle Scholar
  47. Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark WA (1992) International code of nomenclature of bacteria: bacteriological code, 1990 revision. ASM Press International Union of Microbiological Societies, Washington, DCGoogle Scholar
  48. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25(7):1307–1320CrossRefPubMedGoogle Scholar
  49. Makhdoumi-Kakhki A, Amoozegar MA, Ventosa A (2012) Halovenus aranensis gen. nov., sp. nov., an extremely halophilic archaeon from Aran-Bidgol salt lake. Int J Syst Evol Microbiol 62(Pt 6):1331–1336CrossRefPubMedGoogle Scholar
  50. Minegishi H, Echigo A, Nagaoka S, Kamekura M, Usami R (2010a) Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol 60(Pt 11):2513–2516CrossRefPubMedGoogle Scholar
  51. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R, Hashimoto T (2010b) Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B ‘ (rpoB ‘) gene. Int J Syst Evol Microbiol 60:2398–2408CrossRefPubMedGoogle Scholar
  52. Montero CG, Klenk H-P, Nieto JJ, Ventosa A (1993) DNA-rRNA hybridization studies on Halococcus saccharolyticus and other halobacteria. FEMS Microbiol Lett 111(1):69–72CrossRefGoogle Scholar
  53. Mou YZ, Qiu XX, Zhao ML, Cui HL, Oh D, Dyall-Smith ML (2012) Halohasta litorea gen. nov. sp. nov., and Halohasta litchfieldiae sp. nov., isolated from the Daliang aquaculture farm, China and from Deep Lake, Antarctica, respectively. Extremophiles 16(6):895–901CrossRefPubMedGoogle Scholar
  54. Mylvaganam S, Dennis PP (1992) Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 130(3):399–410PubMedPubMedCentralGoogle Scholar
  55. NamesforLife (2015) NamesforLife. http://www.namesforlife.com/
  56. Naor A, Lapierre P, Mevarech M, Papke RT, Gophna U (2012) Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr Biol 22(15):1444–1448CrossRefPubMedGoogle Scholar
  57. Naushad HS, Lee B, Gupta RS (2014) Conserved signature indels and signature proteins as novel tools for understanding microbial phylogeny and systematics: identification of molecular signatures that are specific for the phytopathogenic genera Dickeya, Pectobacterium and Brenneria. Int J Syst Evol Microbiol 64(2):366–383CrossRefPubMedGoogle Scholar
  58. Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE, Gupta RS (2015) A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie Van Leeuwenhoek 107(2):467–485CrossRefPubMedGoogle Scholar
  59. NCBI (2015) NCBI genome database. http://www.ncbi.nlm.nih.gov/genome/
  60. Oren A (2006) The order Halobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 113–164CrossRefGoogle Scholar
  61. Oren A (2012) Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. Int J Syst Evol Microbiol 62(Pt 2):263–271CrossRefPubMedGoogle Scholar
  62. Oren A, Garrity GM (2014) Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie Van Leeuwenhoek 106(1):43–56CrossRefPubMedGoogle Scholar
  63. Oren A, Gurevich P, Gemmell RT, Teske A (1995) Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45(4):747–754CrossRefPubMedGoogle Scholar
  64. Oren A, Elevi R, Watanabe S, Ihara K, Corcelli A (2002) Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei. Int J Syst Evol Microbiol 52(Pt 5):1831–1835PubMedGoogle Scholar
  65. Oren A, Arahal DR, Ventosa A (2009) Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 59(Pt 3):637–642CrossRefPubMedGoogle Scholar
  66. Papke RT, White E, Reddy P, Weigel G, Kamekura M, Minegishi H, Usami R, Ventosa A (2011) A multilocus sequence analysis approach to the phylogeny and taxonomy of the Halobacteriales. Int J Syst Evol Microbiol 61(Pt 12):2984–2995CrossRefPubMedGoogle Scholar
  67. Parte AC (2013) LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:D613–D616CrossRefPubMedPubMedCentralGoogle Scholar
  68. Pfeiffer F, Schuster SC, Broicher A, Falb M, Palm P, Rodewald K, Ruepp A, Soppa J, Tittor J, Oesterhelt D (2008) Evolution in the laboratory: the genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1. Genomics 91(4):335–346CrossRefPubMedGoogle Scholar
  69. Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490CrossRefPubMedPubMedCentralGoogle Scholar
  70. Pruesse E, Peplies J, Glockner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28(14):1823–1829CrossRefPubMedPubMedCentralGoogle Scholar
  71. Qiu XX, Zhao ML, Han D, Zhang WJ, Cui HL (2013) Haloplanus salinus sp. nov., an extremely halophilic archaeon from a Chinese marine solar saltern. Arch Microbiol 195(12):799–803CrossRefPubMedGoogle Scholar
  72. Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15(11):454–459CrossRefPubMedGoogle Scholar
  73. Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425(6960):798–804CrossRefPubMedGoogle Scholar
  74. Rossello-Mora R, Amann R (2015) Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 38(4):209–216CrossRefPubMedGoogle Scholar
  75. Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429CrossRefPubMedPubMedCentralGoogle Scholar
  76. Shimane Y, Hatada Y, Minegishi H, Mizuki T, Echigo A, Miyazaki M, Ohta Y, Usami R, Grant WD, Horikoshi K (2010) Natronoarchaeum mannanilyticum gen. nov., sp. nov., an aerobic, extremely halophilic archaeon isolated from commercial salt. Int J Syst Evol Microbiol 60(Pt 11):2529–2534CrossRefPubMedGoogle Scholar
  77. Shimane Y, Hatada Y, Minegishi H, Echigo A, Nagaoka S, Miyazaki M, Ohta Y, Maruyama T, Usami R, Grant WD et al (2011) Salarchaeum japonicum gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea isolated from commercial salt. Int J Syst Evol Microbiol 61(Pt 9):2266–2270CrossRefPubMedGoogle Scholar
  78. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7(1):539CrossRefPubMedPubMedCentralGoogle Scholar
  79. Song HS, Cha IT, Yim KJ, Lee HW, Hyun DW, Lee SJ, Rhee SK, Kim KN, Kim D, Choi JS et al (2014) Halapricum salinum gen. nov., sp. nov., an extremely halophilic archaeon isolated from non-purified solar salt. Antonie Van Leeuwenhoek 105(5):979–986CrossRefPubMedGoogle Scholar
  80. Soucy SM, Fullmer MS, Papke RT, Gogarten JP (2014) Inteins as indicators of gene flow in the halobacteria. Front Microbiol, 5Google Scholar
  81. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sutcliffe IC (2015) Challenging the anthropocentric emphasis on phenotypic testing in prokaryotic species descriptions: rip it up and start again. Front Genet 6:218CrossRefPubMedPubMedCentralGoogle Scholar
  83. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564–577CrossRefPubMedGoogle Scholar
  84. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Lectures on mathematics in the life sciences, 17th edn. American Mathematical Society, Providence, RI, pp 57–86Google Scholar
  86. Vreeland RH, Straight S, Krammes J, Dougherty K, Rosenzweig WD, Kamekura M (2002) Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6(6):445–452CrossRefPubMedGoogle Scholar
  87. Walsh DA, Bapteste E, Kamekura M, Doolittle WF (2004) Evolution of the RNA polymerase B’ subunit gene (rpoB’) in Halobacteriales: a complementary molecular marker to the SSU rRNA gene. Mol Biol Evol 21(12):2340–2351CrossRefPubMedGoogle Scholar
  88. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18(5):691–699CrossRefPubMedGoogle Scholar
  89. Whitman WB (2015) Genome sequences as the type material for taxonomic descriptions of prokaryotes. Syst Appl Microbiol 38(4):217–222CrossRefPubMedGoogle Scholar
  90. Williams D, Gogarten JP, Papke RT (2012) Quantifying homologous replacement of loci between haloarchaeal species. Genome Biol Evol 4(12):1223–1244CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wong SY, Paschos A, Gupta RS, Schellhorn HE (2014) Insertion/deletion-based approach for the detection of Escherichia coli O157:H7 in freshwater environments. Environ Sci Technol 48(19):11462–11470CrossRefPubMedGoogle Scholar
  92. Wright AD (2006) Phylogenetic relationships within the order Halobacteriales inferred from 16S rRNA gene sequences. Int J Syst Evol Microbiol 56(Pt 6):1223–1227CrossRefPubMedGoogle Scholar
  93. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462(7276):1056–1060CrossRefPubMedPubMedCentralGoogle Scholar
  94. Xue Y, Fan H, Ventosa A, Grant WD, Jones BE, Cowan DA, Ma Y (2005) Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. Int J Syst Evol Microbiol 55(Pt 6):2501–2505CrossRefPubMedGoogle Scholar
  95. Yuan PP, Zhang WJ, Han D, Cui HL (2015) Haloarchaeobius salinus sp. nov., isolated from an inland salt lake, and emended description of the genus Haloarchaeobius. Int J Syst Evol Microbiol 65(Pt 3):910–914CrossRefPubMedGoogle Scholar
  96. Zhang X, Zhang WY, Shen AH, Huo YY, Zhu XF, Wu M (2013) Halopelagius longus sp. nov., a member of the family Halobacteriaceae isolated from a salt mine, and emended description of the genus Halopelagius. Int J Syst Evol Microbiol 63(Pt 10):3585–3590CrossRefPubMedGoogle Scholar
  97. Zhi X-Y, Zhao W, Li W-J, Zhao G-P (2012) Prokaryotic systematics in the genomics era. Anton Leeuw Int J G 101(1):21–34CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Radhey S. Gupta
    • 1
  • Sohail Naushad
    • 1
  • Reena Fabros
    • 1
  • Mobolaji Adeolu
    • 1
  1. 1.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations