Advertisement

Antonie van Leeuwenhoek

, Volume 109, Issue 2, pp 253–261 | Cite as

Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr

  • Lu Bai
  • Chongxi Liu
  • Lifeng Guo
  • Chenyu Piao
  • Zhilei Li
  • Jiansong Li
  • Feiyu Jia
  • Xiangjing WangEmail author
  • Wensheng XiangEmail author
Original Paper

Abstract

During a screening for novel and biotechnologically useful actinobacteria in insects, a novel actinomycete with antifungal activity, designated strain 1H-GS9T, was isolated from the head of a Camponotus japonicus Mayr ant, which were collected from Northeast Agricultural University (Harbin, Heilongjiang, China). Strain 1H-GS9T was characterised using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain 1H-GS9T belongs to the genus Streptomyces with high sequence similarities to Streptomyces scopuliridis DSM 41917T (98.8 %) and Streptomyces mauvecolor JCM 5002T (98.6 %). However, phylogenetic analysis based on the 16S rRNA gene sequence indicated that it forms a monophyletic clade with Streptomyces kurssanovii JCM 4388T (98.6 %), Streptomyces xantholiticus JCM 4282T (98.6 %) and Streptomyces peucetius JCM 9920T (98.5 %). Thus, a combination of DNA–DNA hybridization experiments and phenotypic tests were carried out between strain 1H-GS9T and the above-mentioned five strains, which further clarified their relatedness and demonstrated that strain 1H-GS9T could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces formicae sp. nov. is proposed. The type strain is 1H-GS9T (=CGMCC 4.7277T = DSM 100524T).

Keywords

Streptomyces formicae sp. nov. Camponotus japonicus Mayr Polyphasic taxonomy 16S rRNA gene Antifungal activity 

Notes

Acknowledgments

This work was supported in part by grants from the National Outstanding Youth Foundation (No. 31225024), the National Natural Science Foundation of China (No. 31471832, 31171913, 31500010, 31572070 and 31372006), the National Key Technology R&D Program (No. 2012BAD19B06), Chang Jiang Scholar Candidates Program for Provincial Universities in Heilongjiang (CSCP), the Youth Science Foundation of Heilongjiang Province (No. QC2014C013), the “Young Talents” Project of Northeast Agricultural University (14QC02), the Sicence and Technology Research Project of Heilongjiang Provincial Educational Commission (No. 12541001), the China Postdoctoral Science Foundation (2014M561319) and the Heilongjiang Postdoctoral Fund (LBH-Z14027). We are grateful to Prof. Aharon Oren for helpful advice on the specific epithet.

Supplementary material

10482_2015_628_MOESM1_ESM.docx (5.2 mb)
Supplementary material 1 (DOCX 5305 kb)

References

  1. Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495CrossRefPubMedGoogle Scholar
  2. Atlas RM (1993) In: Parks LC (ed) Handbook of microbiological media. CRC Press, Boca RatonGoogle Scholar
  3. Bérdy J (2012) Thoughts and facts about antibiotics; where we are now and where are we heading. J Antibiot 51:1–26Google Scholar
  4. Blodgett JAV, Oh DC, Cao S, Currie CR, Kolter R, Clardy J (2010) Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proc Natl Acad Sci 107:11692–11697PubMedCentralCrossRefPubMedGoogle Scholar
  5. Carr G, Poulsen M, Klassen JL, Hou YP, Wyche TP, Bugni TS, Currie CR, Clardy J (2012) Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of Vinylamycin. Org Lett 14:2822–2825PubMedCentralCrossRefPubMedGoogle Scholar
  6. Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–284Google Scholar
  7. Currie CR, Scott JA, Summerbell RC, Malloch D (2003) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 423:461CrossRefGoogle Scholar
  8. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefPubMedGoogle Scholar
  9. Demain AL (2014) Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biot 41:185–201CrossRefGoogle Scholar
  10. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 105:307–315CrossRefPubMedGoogle Scholar
  13. Goodfellow M, Fiedler H-P (2010) A guide to successful bio-prospecting: informed by actinobacterial systematics. Antonie van Leeuwenhoek 98:119–142CrossRefPubMedGoogle Scholar
  14. Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 24:54–63CrossRefGoogle Scholar
  15. Guan XJ, Liu CX, Zhao JW, Fang BZ, Zhang YJ, Li LJ, Jin PJ, Wang XJ, Xiang WS (2015) Streptomyces maoxianensis sp. nov., a novel actinomycete isolated from soil in Maoxian, China. Antonie van Leeuwenhoek 107:1119–1126CrossRefPubMedGoogle Scholar
  16. Guo ZK, Liu SB, Jiao RH, Wang T, Tan RX, Ge HM (2012) Angucyclines from an insect-derived actinobacterium Amycolatopsis sp. HCa1 and their cytotoxic activity. Bioorg Med Chem Lett 22:7490–7493CrossRefPubMedGoogle Scholar
  17. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192CrossRefPubMedGoogle Scholar
  18. Jia FY, Liu CX, Wang XJ, Zhao JW, Liu QF, Zhang J, Gao RX, Xiang WS (2013) Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie Van Leeuwenhoek 103:399–408CrossRefPubMedGoogle Scholar
  19. Kämpfer P (2012) Genus I. Streptomyces. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, the Actinobacteria, vol 5, 2nd edn. Springer, New York, pp 1455–1462Google Scholar
  20. Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors published in USGoogle Scholar
  21. Kerry MO, Andrew HS, Jacob AR (2014) Defensive symbiosis in the real world-advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol 28:341–355CrossRefGoogle Scholar
  22. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036CrossRefPubMedGoogle Scholar
  23. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  24. Kim KH, Ramadhar TR, Beemelmanns C, Cao S, Poulsen M, Currie CR, Clardy J (2014) Natalamycin A, an ansamysin from a temite-associated Streptomyces sp. Chem Sci 1:4333–4338CrossRefGoogle Scholar
  25. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  26. Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C, Maddula RK, Strohm E, Svatoš A (2010) Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 6:261–263CrossRefPubMedGoogle Scholar
  27. Lechevalier HA, Lechevalier MP (1970a) A critical evaluation of the genera of aerobic actinomycetes. In: Prauser H (ed) The actinomycetes. Gustav Fischer Verlag, Jena, pp 393–405Google Scholar
  28. Lechevalier MP, Lechevalier HA (1970b) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443CrossRefGoogle Scholar
  29. Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291Google Scholar
  30. Lechevalier MP, De Bièvre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260CrossRefGoogle Scholar
  31. Madden AA, Grassetti A, Soriano JAN, Starks PT (2013) Actinomycetes with antimicrobial activity isolated from paper wasp (Hymenoptera: Vespidae: Polistinae) nests. Environ Entomol 42:703–710CrossRefPubMedGoogle Scholar
  32. Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206CrossRefGoogle Scholar
  33. Martin K, Tobias E (2014) Defensive microbial symbionts in Hymenoptera. Funct Ecol 28:315–327CrossRefGoogle Scholar
  34. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Seviou RJ (2000) A simple HPLC method for analyzing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182CrossRefPubMedGoogle Scholar
  35. Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097CrossRefPubMedGoogle Scholar
  36. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233CrossRefGoogle Scholar
  37. Minnikin DE, O′Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  38. Nikapitiya C (2012) Bioactive secondary metabolites from marine microbes for drug discovery. Adv Food Nutr Res 65:363–387CrossRefPubMedGoogle Scholar
  39. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  40. Saria O, Aram M, Tânia N, Lars HH, N’golo AK, Søsen JS, Duur KA, Jacobus JB, Andreas B, Michael P (2014) Identifying the core microbial community in the gut of fungus-growing termites. Mol Ecol 23:4631–4644CrossRefGoogle Scholar
  41. Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR (2008) Bacterial protection of beetle-fungus mutualism. Science 322:63PubMedCentralCrossRefPubMedGoogle Scholar
  42. Shirling EB, Gottlieb D (1966) Methods for characterisation of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  43. Smibert RM, Krieg NR (1994) Phenotypic characterisation. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654Google Scholar
  44. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.06. Mol Biol Evol 30:2725–2729PubMedCentralCrossRefPubMedGoogle Scholar
  45. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  46. Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 16:176–178Google Scholar
  47. Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficusreligiosa). Int J Syst Evol Microbiol 61:1165–1169CrossRefPubMedGoogle Scholar
  48. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacteral kalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153CrossRefPubMedGoogle Scholar
  49. Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812CrossRefGoogle Scholar
  50. Yousif G, Busarakam K, Kim BY, Goodfellow M (2015) Streptomyces mangrovi sp. nov., isolated from mangrove forest sediment. Antonie Van Leeuwenhoek 108:783–791CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lu Bai
    • 1
  • Chongxi Liu
    • 1
  • Lifeng Guo
    • 1
  • Chenyu Piao
    • 1
  • Zhilei Li
    • 1
  • Jiansong Li
    • 1
  • Feiyu Jia
    • 1
  • Xiangjing Wang
    • 1
    Email author
  • Wensheng Xiang
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education CommitteeNortheast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations