Advertisement

Antonie van Leeuwenhoek

, Volume 109, Issue 1, pp 131–148 | Cite as

Identification of a gene involved in the biosynthesis pathway of the terminal sugar of the archaellin N-linked tetrasaccharide in Methanococcus maripaludis

  • Yan Ding
  • Gareth M. Jones
  • Cedric Brimacombe
  • Kaoru Uchida
  • Shin-Ichi Aizawa
  • Susan M. Logan
  • John F. KellyEmail author
  • Ken F. JarrellEmail author
Original Paper

Abstract

In Methanococcus maripaludis, the three archaellins which comprise the archaellum are modified at multiple sites with an N-linked tetrasaccharide with the structure of Sug-4-β-ManNAc3NAmA6Thr-4-β-GlcNAc3NAcA-3-β-GalNAc, where Sug is a unique sugar (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-l-erythro-hexos-5-ulo-1,5-pyranose, so far found exclusively in this species. In this study, a six-gene cluster mmp10891094, neighboring one of the genomic regions already known to contain genes involved with the archaellin N-glycosylation pathway, was examined for its potential involvement in the archaellin N-glycosylation or sugar biosynthesis pathway. The co-transcription of these six genes was demonstrated by RT-PCR. Mutants carrying an in-frame deletion in mmp1090, mmp1091 or mmp1092 were successfully generated. The Δmmp1090 deletion mutant was archaellated when examined by electron microscopy and mass spectrometry analysis of purified archaella showed that the archaellins were modified with a truncated N-glycan in which the terminal sugar residue and the threonine linked to the third sugar residue were missing. Both gene annotation and bioinformatic analyses indicate that MMP1090 is a UDP-glucose 4-epimerase, suggesting that the unique terminal sugar of the archaellin N-glycan might be synthesised from UDP-glucose or UDP-N-acetylglucosamine with an essential early step in synthesis catalysed by MMP1090. In contrast, no detectable phenotype related to archaellin glycosylation was observed in mutants deleted for either mmp1091 or mmp1092 while attempts to delete mmp1089, mmp1093 and mmp1094 were unsuccessful. Based on its demonstrated involvement in the archaellin N-glycosylation pathway, we designated mmp1090 as aglW.

Keywords

Archaea Methanogens N-linked glycosylation Archaella Mass spectrometry In-frame deletion 

Notes

Acknowledgments

This work was funded by the National Research Council of Canada (SML, JFK) and by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) (to KFJ). Y.D. is sponsored by China Scholarship Council (2010622028).

References

  1. Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833:2430–2437CrossRefPubMedGoogle Scholar
  2. Albers SV, Jarrell KF (2015) The archaellum:how archaea swim. Front Microbiol 6:23PubMedCentralCrossRefPubMedGoogle Scholar
  3. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296PubMedCentralPubMedGoogle Scholar
  4. Bardy SL, Jarrell KF (2003) Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae. Mol Microbiol 50:1339–1347CrossRefPubMedGoogle Scholar
  5. Bardy SL, Mori T, Komoriya K, Aizawa S, Jarrell KF (2002) Identification and localization of flagellins FlaA and FlaB3 within flagella of Methanococcus voltae. J Bacteriol 184:5223–5233PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bernatchez S, Szymanski CM, Ishiyama N, Li J, Jarrell HC, Lau PC, Berghuis AM, Young NM, Wakarchuk WW (2005) A single bifunctional UDP-GlcNAc/Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. J Biol Chem 280:4792–4802CrossRefPubMedGoogle Scholar
  7. Chaban B, Voisin S, Kelly J, Logan SM, Jarrell KF (2006) Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea. Mol Microbiol 61:259–268CrossRefPubMedGoogle Scholar
  8. Chaban B, Ng SY, Kanbe M, Saltzman I, Nimmo G, Aizawa SI, Jarrell KF (2007) Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis. Mol Microbiol 66:596–609CrossRefPubMedGoogle Scholar
  9. Chung SK, Ryu SI, Lee SB (2012) Characterization of UDP-glucose 4-epimerase from Pyrococcus horikoshii: regeneration of UDP to produce UDP-galactose using two-enzyme system with trehalose. Bioresour Technol 110:423–429CrossRefPubMedGoogle Scholar
  10. Cohen-Rosenzweig C, Yurist-Doutsch S, Eichler J (2012) AglS, a novel component of the Haloferax volcanii N-glycosylation pathway, is a dolichol phosphate-mannose mannosyltransferase. J Bacteriol 194:6909–6916PubMedCentralCrossRefPubMedGoogle Scholar
  11. Cunneen MM, Reeves PR (2008) Membrane topology of the Salmonella enterica serovar Typhimurium Group B O-antigen translocase Wzx. FEMS Microbiol Lett 287:76–84CrossRefPubMedGoogle Scholar
  12. Ding Y, Jones GM, Uchida K, Aizawa SI, Robotham A, Logan SM, Kelly J, Jarrell KF (2013) Identification of genes involved in the biosynthesis of the third and fourth sugars of the Methanococcus maripaludis archaellin N-linked tetrasaccharide. J Bacteriol 195:4094–4104PubMedCentralCrossRefPubMedGoogle Scholar
  13. Ding Y, Uchida K, Aizawa SI, Murphy K, Berezuk A, Khursigara CM, Chong JPJ, Jarrell KF (2015) Effects of N-glycosylation site removal in archaellins on the assembly and function of archaella in Methanococcus maripaludis. PLoS One 10:e0116402PubMedCentralCrossRefPubMedGoogle Scholar
  14. Eichler J (2013) Extreme sweetness: protein glycosylation in Archaea. Nature Rev Microbiol 11:151–156CrossRefGoogle Scholar
  15. Eichler J, Jarrell K, Albers S (2013) A proposal for the naming of N-glycosylation pathway components in Archaea. Glycobiology 23:620–621CrossRefGoogle Scholar
  16. Geerlof A, Lewendon A, Shaw WV (1999) Purification and characterization of phosphopantetheine adenylyltransferase from Escherichia coli. J Biol Chem 274:27105–27111CrossRefPubMedGoogle Scholar
  17. Genschel U (2004) Coenzyme a biosynthesis: reconstruction of the pathway in archaea and an evolutionary scenario based on comparative genomics. Mol Biol Evol 21:1242–1251CrossRefPubMedGoogle Scholar
  18. Gruyer S, Legin E, Bliard C, Ball S, Duchiron F (2002) The endopolysaccharide metabolism of the hyperthermophilic archeon Thermococcus hydrothermalis: polymer structure and biosynthesis. Curr Microbiol 44:206–211CrossRefPubMedGoogle Scholar
  19. Henrissat B, Deleury E, Coutinho PM (2002) Glycogen metabolism loss: a common marker of parasitic behaviour in bacteria? Trends Genet 18:437–440CrossRefPubMedGoogle Scholar
  20. Horcajada C, Guinovart JJ, Fita I, Ferrer JC (2006) Crystal structure of an archaeal glycogen synthase: insights into oligomerization and substrate binding of eukaryotic glycogen synthases. J Biol Chem 281:2923–2931CrossRefPubMedGoogle Scholar
  21. Igura M, Maita N, Obita T, Kamishikiryo J, Maenaka K, Kohda D (2007) Purification, crystallization and preliminary X-ray diffraction studies of the soluble domain of the oligosaccharyltransferase STT3 subunit from the thermophilic archaeon Pyrococcus furiosus. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 63:798–801CrossRefGoogle Scholar
  22. Ishiyama N, Creuzenet C, Lam JS, Berghuis AM (2004) Crystal structure of WbpP, a genuine UDP-N-acetylglucosamine 4-epimerase from Pseudomonas aeruginosa: substrate specificity in udp-hexose 4-epimerases. J Biol Chem 279:22635–22642CrossRefPubMedGoogle Scholar
  23. Islam ST, Lam JS (2013) Wzx flippase-mediated membrane translocation of sugar polymer precursors in bacteria. Environ Microbiol 15:1001–1015CrossRefPubMedGoogle Scholar
  24. Islam ST, Taylor VL, Qi M, Lam JS (2010) Membrane topology mapping of the O-antigen flippase (Wzx), polymerase (Wzy), and ligase (WaaL) from Pseudomonas aeruginosa PAO1 reveals novel domain architectures. Mbio 1:3CrossRefGoogle Scholar
  25. Jarrell KF, Albers SV (2012) The archaellum: an old motility structure with a new name. Trends Microbiol 20:307–312CrossRefPubMedGoogle Scholar
  26. Jarrell KF, Jones GM, Kandiba L, Nair DB, Eichler J (2010) S-layer glycoproteins and flagellins: reporters of archaeal posttranslational modifications. Archaea. doi: 10.1155/2010/612948 PubMedCentralPubMedGoogle Scholar
  27. Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J (2014) N-Linked glycosylation in Archaea: a structural, functional, and genetic analysis. Microbiol Mol Biol Rev 78:304–341PubMedCentralCrossRefPubMedGoogle Scholar
  28. Jones GM, Wu J, Ding Y, Uchida K, Aizawa S, Robotham A, Logan SM, Kelly J, Jarrell KF (2012) Identification of genes involved in the acetamidino group modification of the flagellin N-linked glycan of Methanococcus maripaludis. J Bacteriol 194:2693–2702PubMedCentralCrossRefPubMedGoogle Scholar
  29. Jörnvall H, Persson B, Krook M, Atrian S, Gonzàlez-Duarte R, Jeffery J, Ghosh D (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34:6003–6013CrossRefPubMedGoogle Scholar
  30. Kallberg Y, Oppermann U, Jörnvall H, Persson B (2002) Short-chain dehydrogenases/reductases (SDRs). Eur J Biochem 269:4409–4417CrossRefPubMedGoogle Scholar
  31. Kaminski L, Guan Z, Abu-Qarn M, Konrad Z, Eichler J (2012) AglR is required for addition of the final mannose residue of the N-linked glycan decorating the Haloferax volcanii S-layer glycoprotein. Biochim Biophys Acta 1820:1664–1670PubMedCentralCrossRefPubMedGoogle Scholar
  32. Kaminski L, Lurie-Weinberger MN, Allers T, Gophna U, Eichler J (2013) Phylogenetic- and genome-derived insight into the evolution of N-glycosylation in Archaea. Mol Phylogenet Evol 68:327–339CrossRefPubMedGoogle Scholar
  33. Kelly J, Logan SM, Jarrell KF, Vandyke DJ, Vinogradov E (2009) A novel N-linked flagellar glycan from Methanococcus maripaludis. Carbohydr Res 344:648–653CrossRefPubMedGoogle Scholar
  34. Kupke T, Schwarz W (2006) 4′-phosphopantetheine biosynthesis in Archaea. J Biol Chem 281:5435–5444CrossRefPubMedGoogle Scholar
  35. Lie TJ, Wood GE, Leigh JA (2005) Regulation of nif expression in Methanococcus maripaludis: roles of the euryarchaeal repressor NrpR, 2-oxoglutarate, and two operators. J Biol Chem 280:5236–5241CrossRefPubMedGoogle Scholar
  36. Liu D, Cole RA, Reeves PR (1996) An O-antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase. J Bacteriol 178:2102–2107PubMedCentralPubMedGoogle Scholar
  37. Marolda CL, Li B, Lung M, Yang M, Hanuszkiewicz A, Rosales AR, Valvano MA (2010) Membrane topology and identification of critical amino acid residues in the Wzx O-antigen translocase from Escherichia coli O157:H4. J Bacteriol 192:6160–6171PubMedCentralCrossRefPubMedGoogle Scholar
  38. Matsumoto S, Shimada A, Kohda D (2013) Crystal structure of the C-terminal globular domain of the third paralog of the Archaeoglobus fulgidus oligosaccharyltransferases. BMC Struct Biol 13:11PubMedCentralCrossRefPubMedGoogle Scholar
  39. Mizanur RM, Zea CJ, Pohl NL (2004) Unusually broad substrate tolerance of a heat-stable archaeal sugar nucleotidyltransferase for the synthesis of sugar nucleotides. J Am Chem Soc 126:15993–15998CrossRefPubMedGoogle Scholar
  40. Moore BC, Leigh JA (2005) Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease. J Bacteriol 187:972–979PubMedCentralCrossRefPubMedGoogle Scholar
  41. Nair DB, Uchida K, Aizawa SI, Jarrell KF (2014) Genetic analysis of a type IV pili-like locus in the archaeon Methanococcus mariplaudis. Arch Microbiol 196:179–191CrossRefPubMedGoogle Scholar
  42. Namboori SC, Graham DE (2008a) Enzymatic analysis of uridine diphosphate N-acetyl-D-glucosamine. Anal Biochem 301:94–100CrossRefGoogle Scholar
  43. Namboori SC, Graham DE (2008b) Acetamido sugar biosynthesis in the Euryarchaea. J Bacteriol 190:2987–2996PubMedCentralCrossRefPubMedGoogle Scholar
  44. Ng SYM, Wu J, Nair DB, Logan SM, Robotham A, Tessier L, Kelly JF, Uchida K, Aizawa S-, Jarrell KF (2011) Genetic and mass spectrometry analysis of the unusual type IV-like pili of the archaeon Methanococcus maripaludis. J Bacteriol 193:804–814PubMedCentralCrossRefPubMedGoogle Scholar
  45. Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8:765–778CrossRefPubMedGoogle Scholar
  46. Nothaft H, Szymanski CM (2013) Bacterial protein N-glycosylation: new perspectives and applications. J Biol Chem 288:6912–6920PubMedCentralCrossRefPubMedGoogle Scholar
  47. Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B, Jörnvall H (2003) Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact 143–144:247–253CrossRefPubMedGoogle Scholar
  48. Persson B, Kallberg Y (2013) Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs). Chem Biol Interact 202:111–115CrossRefPubMedGoogle Scholar
  49. Sakuraba H, Kawai T, Yoneda K, Ohshima T (2011) Crystal structure of UDP-galactose 4-epimerase from the hyperthermophilic archaeon Pyrobaculum calidifontis. Arch Biochem Biophys 512:126–134CrossRefPubMedGoogle Scholar
  50. Sarmiento F, Mrázek J, Whitman WB (2013) Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis. Proc Natl Acad Sci U S A 110:4726–4731PubMedCentralCrossRefPubMedGoogle Scholar
  51. Siu S, Robotham A, Logan SM, Kelly JF, Uchida K, Aizawa SI, Jarrell KF (2015) Evidence that biosynthesis of the second and third sugars of the archaellin tetrasaccharide in the archaeon Methanococcus maripaludis occurs by the same pathway used by Pseudomonas aeruginosa to make a di-N-acetylated sugar. J Bacteriol 197:1668–1680PubMedCentralCrossRefPubMedGoogle Scholar
  52. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182PubMedGoogle Scholar
  53. Thoden JB, Wohlers TM, Fridovich-Keil JL, Holden HM (2000) Crystallographic evidence for Tyr 157 functioning as the active site base in human UDP-galactose 4-epimerase. Biochemistry 39:5691–5701CrossRefPubMedGoogle Scholar
  54. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354PubMedCentralCrossRefPubMedGoogle Scholar
  55. Tumbula DL, Makula RA, Whitman WB (1994) Transformation of Methanococcus maripaludis and identification of a PstI-like restriction system. FEMS Microbiol Lett 121:309–314CrossRefGoogle Scholar
  56. VanDyke DJ, Wu J, Ng SY, Kanbe M, Chaban B, Aizawa SI, Jarrell KF (2008) Identification of putative acetyltransferase gene, MMP0350, which affects proper assembly of both flagella and pili in the archaeon Methanococcus maripaludis. J Bacteriol 190:5300–5307PubMedCentralCrossRefPubMedGoogle Scholar
  57. Vandyke DJ, Wu J, Logan SM, Kelly JF, Mizuno S, Aizawa SI, Jarrell KF (2009) Identification of genes involved in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus maripaludis. Mol Microbiol 72:633–644CrossRefPubMedGoogle Scholar
  58. Xayarath B, Yother J (2007) Mutations blocking side chain assembly, polymerization, or transport of a Wzy-dependent Streptococcus pneumoniae capsule are lethal in the absence of suppressor mutations and can affect polymer transfer to the cell wall. J Bacteriol 189:3369–3381PubMedCentralCrossRefPubMedGoogle Scholar
  59. Yu JP, Ladapo J, Whitman WB (1994) Pathway of glycogen metabolism in Methanococcus maripaludis. J Bacteriol 176:325–332PubMedCentralPubMedGoogle Scholar
  60. Yurist-Doutsch S, Abu-Qarn M, Battaglia F, Morris HR, Hitchen PG, Dell A, Eichler J (2008) AglF, aglG and aglI, novel members of a gene island involved in the N-glycosylation of the Haloferax volcanii S-layer glycoprotein. Mol Microbiol 69:1234–1245CrossRefPubMedGoogle Scholar
  61. Zhang Z, Tsujimura M, Akutsu J, Sasaki M, Tajima H, Kawarabayasi Y (2005) Identification of an extremely thermostable enzyme with dual sugar-1-phosphate nucleotidylyltransferase activities from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7. J Biol Chem 280:9698–9705CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Biomedical and Molecular SciencesQueen’s UniversityKingstonCanada
  2. 2.Department of Life SciencesPrefectural University of HiroshimaShobaraJapan
  3. 3.Human Health Therapeutics PortfolioNational Research CouncilOttawaCanada

Personalised recommendations