Antonie van Leeuwenhoek

, Volume 108, Issue 6, pp 1319–1330 | Cite as

A heavy metal tolerant novel bacterium, Bacillus malikii sp. nov., isolated from tannery effluent wastewater

  • Saira Abbas
  • Iftikhar Ahmed
  • Takuji Kudo
  • Muhammad Iqbal
  • Yong-Jae Lee
  • Toru Fujiwara
  • Moriya Ohkuma
Original Paper

Abstract

The taxonomic position of a Gram-stain positive and heavy metal tolerant bacterium, designated strain NCCP-662T, was investigated by polyphasic characterisation. Cells of strain NCCP-662T were observed to be rod to filamentous shaped, motile and strictly aerobic, and to grow at 10–50 °C (optimum 30–37 °C) and at pH range of 6–10 (optimum pH 7–8). The strain was found to be able to tolerate 0–12 % NaCl (w/v) and heavy metals (Cr 1200 ppm, Pb 1800 ppm and Cu 1200 ppm) in tryptic soya agar medium. The phylogenetic analysis based on the 16S rRNA gene sequence of strain NCCP-662T showed that it belongs to the genus Bacillus and showed high sequence similarity (98.2 and 98.0 %, respectively) with the type strains of Bacillus niabensis 4T19T and Bacillus halosaccharovorans E33T. The chemotaxonomic data showed that the major quinone is MK-7; the predominant cellular fatty acids are anteiso-C15 :0, iso-C14:0, iso-C16:0 and C16:0 and iso-C15:0; the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol along with several unidentified glycolipids, phospholipids and polar lipids. The DNA G+C content was determined to be 36.9 mol%. These data also support the affiliation of strain NCCP-662T with the genus Bacillus. The level of DNA–DNA relatedness between strain NCCP-662T and B. niabensis JCM 16399T was 20.5 ± 0.5 %. On the basis of physiological and biochemical characteristics, phylogenetic analyses and DNA–DNA hybridization data, strain NCCP-662T can be clearly differentiated from the validly named Bacillus species and thus represents a new species, for which the name Bacillus malikii sp. nov. is proposed with the type strain NCCP-662T (= LMG 28369T = DSM 29005T = JCM 30192T).

Keywords

Bacillus malikii Tannery effluent Heavy metal tolerant 

Notes

Acknowledgments

The financial support from Higher Education Commission of Pakistan to S.A. under International Research Support Initiative Program (IRSIP) is gratefully acknowledged. This work was also supported partly by financial assistance from PSDP funded Project Research for Agricultural Development Project (RADP) under a sub-project (Grant No. CS-55/RADP/PARC) entitled “Establishment of Microbial Bio-Resource Laboratories: National Culture Collection of Pakistan (NCCP)” from Pakistan Agricultural Research Council (PARC), Islamabad, Pakistan and partially from Japan Society for Promotion of Science (JSPS) under fellowship program to I.A.

Supplementary material

10482_2015_584_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1520 kb)

References

  1. Abbas S, Ahmed I, Kudo T, Iida T, Ali GM, Fujiwara T, Ohkuma M (2014) Heavy metal-tolerant and psychrotolerant bacterium Acinetobacter pakistanensis sp. nov., isolated from a textile dyeing wastewater treatment pond. Pak J Agri Sci 51:595–608Google Scholar
  2. Abbas S, Ahmed I, Iida T, Lee YJ, Busse HJ, Fujiwara T, Ohkuma M (2015) A heavy-metal tolerant novel bacterium, Alcaligenes pakistanensis sp. nov., isolated from industrial effluent in Pakistan. Antonie van Leeuwenhoek, doi:10.1007/s10482-015-0540-1
  3. Affan Q, Shoeb E, Badar U, Akhtar J (2009) Isolation and characterization of bacterial isolates having heavy metal tolerance. J Basic Appl Sci 5:55–60Google Scholar
  4. Ahmed I, Yokota A, Fujiwara T (2007a) A novel highly boron tolerant bacterium, Bacillus boroniphilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles 11:217–224. doi:10.1007/s00792-006-0027-0 CrossRefPubMedGoogle Scholar
  5. Ahmed I, Yokota A, Yamazoe A, Fujiwara T (2007b) Proposal of Lysinibacillus boronitolerans gen. nov sp nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 57:1117–1125. doi:10.1099/ijs.0.63867-0 CrossRefPubMedGoogle Scholar
  6. Ahmed I, Kudo T, Abbas S, Ehsan M, Iino T, Fujiwara T, Ohkuma M (2014a) Cellulomonas pakistanensis sp. nov., a novel moderately halotolerant Actinobacteria. Int J Syst Evol Microbiol 64:2305–2311. doi:10.1099/ijs.0.059063-0 CrossRefPubMedGoogle Scholar
  7. Ahmed I, Sin Y, Paek J, Ehsan M, Hayat R, Iqbal M, Chang YH (2014b) Description of Lysinibacillus pakistanensis. Int J Agri Biol 16:447–450Google Scholar
  8. Albert RA et al (2007) Proposal of Viridibacillus gen. nov. and reclassification of Bacillus arvi, Bacillus arenosi and Bacillus neidei as Viridibacillus arvi gen. nov., comb. nov., Viridibacillus arenosi comb. nov. and Viridibacillus neidei comb. nov. Int J Syst Evol Microbiol 57:2729–2737. doi:10.1099/ijs.0.65256-0 CrossRefPubMedGoogle Scholar
  9. Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206. doi:10.1111/j.1472-765X.1991.tb00608.x CrossRefGoogle Scholar
  10. Bagheri M, Didari M, Amoozegar MA, Schumann P, Sanchez-Porro C, Mehrshad M, Ventosa A (2012) Bacillus iranensis sp. nov., a moderate halophile from a hypersaline lake. Int J Syst Evol Microbiol 62:811–816. doi:10.1099/ijs.0.030874-0 CrossRefPubMedGoogle Scholar
  11. Cohn F (1872) Untersuchungen über Bakterien. Bertr Biol Pflanz 1:127–224Google Scholar
  12. Didari M, Amoozegar MA, Bagheri M, Schumann P, Spröer C, Sánchez-Porro C, Ventosa A (2012) Alteribacillus bidgolensis gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Bacillus persepolensis as Alteribacillus persepolensis comb. nov. Int J Syst Evol Microbiol 62:2691–2697. doi:10.1099/ijs.0.034173-0 CrossRefPubMedGoogle Scholar
  13. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229. doi:10.1099/00207713-39-3-224 CrossRefGoogle Scholar
  14. Fortina MG, Pukall R, Schumann P, Mora D, Parini C, Manachini PL, Stackebrandt E (2001) Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov. Int J Syst Evol Microbiol 51:447–455. doi:10.1099/00207713-51-2-447 CrossRefPubMedGoogle Scholar
  15. Glaeser SP, Dott W, Busse H-J, Kämpfer P (2013) Fictibacillus phosphorivorans gen. nov., sp. nov. and proposal to reclassify Bacillus arsenicus, Bacillus barbaricus, Bacillus macauensis, Bacillus nanhaiensis, Bacillus rigui, Bacillus solisalsi and Bacillus gelatini in the genus Fictibacillus. Int J Syst Evol Microbiol 63:2934–2944. doi:10.1099/ijs.0.049171-0 CrossRefPubMedGoogle Scholar
  16. Hafez M, Fouad A, El-Desouky W (2002) Accumulation of some metal ions on Bacillus licheniformis. J Radioanal Nucl Chem 251:249–252CrossRefGoogle Scholar
  17. Hatayama K, Shoun H, Ueda Y, Nakamura A (2006) Tuberibacillus calidus gen. nov., sp. nov., isolated from a compost pile and reclassification of Bacillus naganoensis Tomimura et al. 1990 as Pullulanibacillus naganoensis gen. nov., comb. nov. and Bacillus laevolacticus Andersch et al. 1994 as Sporolactobacillus laevolacticus comb. nov. Int J Syst Evol Microbiol 56:2545–2551. doi:10.1099/ijs.0.64303-0 CrossRefPubMedGoogle Scholar
  18. Heyndrickx M, Lebbe L, Kersters K, De Vos P, Forsyth C, Logan NA (1998) Virgibacillus: a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus. Int J Syst Bacteriol 48:99–106CrossRefGoogle Scholar
  19. Jeon CO, Lim J-M, Lee J-M, Xu L-H, Jiang C-L, Kim C-J (2005) Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 55:1891–1896. doi:10.1099/ijs.0.63456-0 CrossRefPubMedGoogle Scholar
  20. Kämpfer P, Rossello-Mora R, Falsen E, Busse HJ, Tindall BJ (2006) Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 56:781–786. doi:10.1099/ijs.0.63985-0 CrossRefPubMedGoogle Scholar
  21. Kämpfer P, Glaeser SP, Busse H-J (2013) Transfer of Bacillus schlegelii to a novel genus and proposal of Hydrogenibacillus schlegelii gen. nov., comb. nov. Int J Syst Bacteriol 63:1723–1727. doi:10.1099/ijs.0.045146-0 CrossRefGoogle Scholar
  22. Klenk H-P et al (2011) Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2(T)) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacillaceae da Costa and Rainey, 2010. Stand Genom Sci 5:121–134. doi:10.4056/sigs.2144922 CrossRefGoogle Scholar
  23. Krishnamurthi S, Chakrabarti T, Stackebrand E et al (2009) Re-examination of the taxonomic position of Bacillus silvestris Rheims et al. 1999 and proposal to transfer it to Solibacillus gen. nov as Solibacillus silvestris comb. nov. Int J Syst Evol Microbiol 59:1054–1058. doi:10.1099/ijs.0.65742-0 CrossRefPubMedGoogle Scholar
  24. Krishnamurthi S, Ruckmani A, Pukall R, Chakrabarti T (2010) Psychrobacillus gen. nov and proposal for reclassification of Bacillus insolitus Larkin & Stokes, 1967, B. psychrotolerans Abd-El Rahman et al., 2002 and B. psychrodurans Abd-El Rahman et al., 2002 as Psychrobacillus insolitus comb. nov., Psychrobacillus psychrotolerans comb. nov and Psychrobacillus psychrodurans comb. nov. Syst Appl Microbiol 33:367–373. doi:10.1016/j.syapm.2010.06.003 CrossRefPubMedGoogle Scholar
  25. Kudo T (2001) Phospholipids. In: Suzuki K, Hiraishi A, Yokota A (eds) Identification manual of bacteria: molecular genetics and molecular biological methods. Springer, Tokyo, pp 135–144Google Scholar
  26. Kwon SW, Lee SY, Kim BY, Weon HY, Kim JB, Go SJ, Lee GB (2007) Bacillus niabensis sp. nov., isolated from cotton-waste composts for mushroom cultivation. Int J Syst Evol Microbiol 57:1909–1913. doi:10.1099/ijs.0.64178-0 CrossRefPubMedGoogle Scholar
  27. Logan NA, Vos PD (eds) (2009) Genus Bacillus Cohn 1872, 174AL. vol 3. Bergey’s Manual Syst Bacteriol Springer Dordrecht Heidelberg London New York, Baltimore. doi:10.1007/b92997
  28. Logan NA et al (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121. doi:10.1099/ijs.0.013649-0 CrossRefPubMedGoogle Scholar
  29. Mehrshad M et al (2013) Bacillus halosaccharovorans sp. nov., a moderately halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 63:2776–2781. doi:10.1099/ijs.0.046961-0 CrossRefPubMedGoogle Scholar
  30. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Method 2:233–241. doi:10.1016/0167-7012(84)90018-6 CrossRefGoogle Scholar
  31. Nazina TN et al (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446. doi:10.1099/00207713-51-2-433 CrossRefPubMedGoogle Scholar
  32. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nourbakhsh MN, Kiliçarslan S, Ilhan S, Ozdag H (2002) Biosorption of Cr6+, Pb2+ and Cu2+ ions in industrial waste water on Bacillus sp. Chem Eng J 85:351–355CrossRefGoogle Scholar
  34. Roohi A, Ahmed I, Paek J, Sin Y, Abbas S, Jamil M, Chang YH (2014) Bacillus pakistanensis sp. nov., a halotolerant bacterium isolated from salt mines of the Karak Area in Pakistan. Antonie Van Leeuwenhoek 105:1163–1172. doi:10.1007/s10482-014-0177-5 CrossRefPubMedGoogle Scholar
  35. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101Google Scholar
  36. Shida O, Takagi H, Kadowaki K, Komagata K (1996) Proposal for two new genera, Brevibacillus gen nov and Aneurinibacillus gen nov. Int J Syst Bacteriol 46:939–946CrossRefPubMedGoogle Scholar
  37. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K (1997) Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47:289–298CrossRefPubMedGoogle Scholar
  38. Sorokin DY (2005) Is there a limit for high-pH life? Int J Syst Evol Microbiol 55:1405–1406. doi:10.1099/ijs.0.63737-0 CrossRefPubMedGoogle Scholar
  39. Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627CrossRefPubMedGoogle Scholar
  40. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tripathi M, Vikram S, Jain R, Garg S (2010) Studies on selection of efficient bacterial strains simultaneously tolerant to hexavalent chromium and Pentachlorophenol isolated from treated tannery effluent. Indian J Microbiol 5:707–716Google Scholar
  42. Tripathi M, Vikram S, Jain RK, Garg S (2011) Isolation and growth characteristics of chromium(VI) and pentachlorophenol tolerant bacterial Isolate from treated tannery effluent for its possible use in simultaneous bioremediation. Indian J Microbiol 51:61–69. doi:10.1007/s12088-011-0089-2 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Vaishampayan P, Miyashita M, Ohnishi A, Satomi M, Rooney A, La Duc MT, Venkateswaran K (2009) Description of Rummeliibacillus stabekisii gen. nov., sp nov and reclassification of Bacillus pycnus Nakamura et al, 2002 as Rummeliibacillus pycnus comb. nov. Int J Syst Evol Microbiol 59:1094–1099. doi:10.1099/Ijs.0.006098-0 CrossRefPubMedGoogle Scholar
  44. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1982) Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968Google Scholar
  45. Verma P et al (2012) Reclassification of Bacillus beijingensis Qiu et al. 2009 and Bacillus ginsengi Qiu et al. 2009 as Bhargavaea beijingensis comb. nov. and Bhargavaea ginsengi comb. nov. and emended description of the genus Bhargavaea. Int J Syst Evol Microbiol 62:2495–2504. doi:10.1099/ijs.0.034850-0 CrossRefPubMedGoogle Scholar
  46. Wainø M, Tindall BJ, Schumann P, lngvorsenl K (1999) Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831CrossRefPubMedGoogle Scholar
  47. Wayne LG et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464. doi:10.1099/00207713-37-4-463 CrossRefGoogle Scholar
  48. Wieser M, Worliczek H, Kampfer P, Busse HJ (2005) Bacillus herbersteinensis sp. nov. Int J Syst Evol Microbiol 55:2119–2123. doi:10.1099/ijs.0.63660-0 CrossRefPubMedGoogle Scholar
  49. Wisotzkey JD, Jurtshuk P Jr, Fox GE, Deinhard G, Poralla K (1992) Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269. doi:10.1099/00207713-42-2-263 CrossRefPubMedGoogle Scholar
  50. Yoon JH, Lee KC, Weiss N, Kho YH, Kang KH, Park YH (2001a) Sporosarcina aquimarina sp nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina. Int J Syst Evol Microbiol 51:1079–1086CrossRefPubMedGoogle Scholar
  51. Yoon JH, Weiss N, Lee KC, Lee IS, Kang KH, Park YH (2001b) Jeotgalibacillus alimentarius gen. nov., sp nov., a novel bacterium isolated from jeotgal with l-lysine in the cell wall, and reclassification of Bacillus marinus Ruger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int J Syst Evol Microbiol 51:2087–2093. doi:10.1099/00207713-51-6-2087 CrossRefPubMedGoogle Scholar
  52. Zahoor A, Rehman A (2009) Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci 21:814–820. doi:10.1016/s1001-0742(08)62346-3 CrossRefGoogle Scholar
  53. Zavarzina D, Tourova T, Kolganova T, Boulygina E, Zhilina T (2009) Description of Anaerobacillus alkalilacustre gen. nov., sp. nov. strictly anaerobic diazotrophic bacillus isolated from soda lake and transfer of Bacillus arseniciselenatis, Bacillus macyae, and Bacillus alkalidiazotrophicus to Anaerobacillus as the new combinations A. arseniciselenatis comb. nov., A. macyae comb. nov., and A. alkalidiazotrophicus comb. nov. Microbiol 78:723–731. doi:10.1134/S0026261709060095 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Saira Abbas
    • 1
    • 2
    • 3
    • 4
  • Iftikhar Ahmed
    • 1
    • 2
    • 3
    • 4
  • Takuji Kudo
    • 3
  • Muhammad Iqbal
    • 2
  • Yong-Jae Lee
    • 5
  • Toru Fujiwara
    • 4
  • Moriya Ohkuma
    • 3
  1. 1.National Culture Collection of Pakistan (NCCP), National Institute for Genomics and Advanced Biotechnology (NIGAB)National Agricultural Research Centre (NARC)IslamabadPakistan
  2. 2.Department of Plant Genomics and Biotechnology (PGB), PARC Institute of Advanced Studies in Agriculture (PIASA)National Agricultural Research Centre (NARC)IslamabadPakistan
  3. 3.Japan Collection of MicroorganismsRIKEN BioResource CenterTsukubaJapan
  4. 4.Laboratory of Plant Nutrition and Fertilizers, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  5. 5.Korean Collection for Type Cultures, Biological Resources CentreKRIBBDaejeonRepublic of Korea

Personalised recommendations