Advertisement

Antonie van Leeuwenhoek

, Volume 108, Issue 5, pp 1047–1057 | Cite as

Antifungal activity of 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone against Candida albicans: evidence for the antifungal mode of action

  • José R. SoberónEmail author
  • Emilio F. Lizarraga
  • Melina A. Sgariglia
  • María B. Carrasco Juárez
  • Diego A. Sampietro
  • Aida Ben Altabef
  • César A. N. Catalán
  • Marta A. Vattuone
Original Paper

Abstract

The main secondary metabolite of Senecio nutans is 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone (4HMBA). The antifungal activity of this compound and three derivatives was assessed using Candida albicans. 4HMBA exhibited the highest antifungal activity among the assayed compounds. The Fractional Inhibitory Concentration (FIC = 0.133) indicated a synergistic fungicidal effect of 4HMBA (5 mg L−1) and fluconazole (FLU) (0.5 mg L−1) against the C. albicans reference strain (ATCC 10231). Microscopy showed that 4HMBA inhibits filamentation and reduces cell wall thickness. Our findings suggest that 4HMBA is an interesting compound to diminish resistance to commercial fungistatic drugs such as fluconazole.

Keywords

4-Hydroxy-3-(3-methyl-2-butenyl)acetophenone Antifungal activity Candida albicans Filamentation Fungal cell wall Synergistic effect 

Notes

Acknowledgments

We thank Ing. Alberto Andrade and Lic. Manuel Siñeriz from LAMENOA (Laboratorio de Microscopía Electrónica del Noroeste Argentino–UNT-CONICET) for technical advice and assistance. This work was supported by grants from Secretaría de Ciencia y Técnica of the Universidad Nacional de Tucumán (CIUNT; Tucumán, Argentina), from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; Buenos Aires, Argentina), and from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT; Buenos Aires, Argentina).

Supplementary material

10482_2015_559_MOESM1_ESM.docx (190 kb)
Supplementary material 1 (DOCX 189 kb)

References

  1. Bachmann SP, VandeWalle K, Ramage G, Patterson TF, Wickes BL, Graybill JR, Lopez-Ribot JL (2002) In vitro activity of echinocandins against Candida albicans biofilms. Antimicrob Agents Chemother 46:3591–3596PubMedCentralCrossRefPubMedGoogle Scholar
  2. Barboza GE, Cantero JJ, Núñez C, Pacciaroni A, Espinar LA (2009) Medicinal plants: a general review and a phytochemical and ethnopharmacological screening of the native Argentine Flora. Kurtziana 34:240Google Scholar
  3. Barelle CJ, Bohula EA, Kron SJ, Wessels D, Soll DR, Schäfer A, Brown AJP, Gow NAR (2003) Asynchronous cell cycle and asymmetric vacuolar inheritance in true hyphae of Candida albicans. Eukaryot Cell 2:398–410PubMedCentralCrossRefPubMedGoogle Scholar
  4. Boeck P, Leal PC, Yunes RA, Cechinel Filho V, López S, Sortino M, Escalante A, Furlán RLE, Zacchino S (2005) Antifungal activity and studies on mode of action of novel xanthoxyline-derived chalcones. Archiv der Pharm 338:87–95CrossRefGoogle Scholar
  5. Bonifait L, Marquis A, Genovese S, Epifano F, Grenier D (2012) Synthesis and antimicrobial activity of geranyloxy- and farnesyloxy-acetophenone derivatives against oral pathogens. Fitoterapia 83:996–999CrossRefPubMedGoogle Scholar
  6. Cantón E, Pemán J, Viudes A, Quindós G, Gobernado M, Espinel-Ingroff A (2003) Minimum fungicidal concentrations of amphotericin B for bloodstream Candida species. Diagn Microbiol Infec Dis 45:203–206CrossRefGoogle Scholar
  7. Chaturvedi V, Ramani R, Ghannoum MA, Killian SB, Holliday N, Knapp C, Ostrosky-Zeichner L, Messer SA, Pfaller MA, Iqbal NJ, Arthington-Skaggs BA, Vazquez JA, Sein T, Rex JH, Walsh TJ (2008) Multilaboratory testing of antifungal combinations against a quality control isolate of Candida krusei. Antimicrob Agents Chemother 52:1500–1502PubMedCentralCrossRefPubMedGoogle Scholar
  8. Clinical Laboratory Standards Institute (CLSI) protocols. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard—3rd Edition, M27-A3. Wayne, 2008Google Scholar
  9. Endo EH, Garcia Cortez DA, Nakamura TU, Nakamura CV, Dias Filho BP (2010) Potent antifungal activity of extracts and pure compound isolated from pomegranate peels and synergism with fluconazole against Candida albicans. Res Microbiol 161:534–540CrossRefPubMedGoogle Scholar
  10. Fiori A, Van Dijck P (2012) Potent synergistic effect of doxycycline with fluconazole against Candida albicans is mediated by interference with iron homeostasis. Antimicrob Agents Chemother 56:3785–3796PubMedCentralCrossRefPubMedGoogle Scholar
  11. Flynn S, Hollis A, Palmedo M (2009) An economic justification for open access to essential medicine patents in developing countries. J Law Med Ethics 37:184–208CrossRefPubMedGoogle Scholar
  12. Khokhar S, Owusu Apenten RK (2003) Iron binding characteristics of phenolic compounds: some tentative structure–activity relations. Food Chem 81:133–140CrossRefGoogle Scholar
  13. Lizarraga E, Romano E, Rudyk R, Catalán CAN, Brandán SA (2012) Structural study, coordinated normal analysis and vibrational spectra of 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone. Spectrochim Acta A 97:399–406CrossRefGoogle Scholar
  14. Loyola LA, Pedreros S, Morales G (1985) p-hidroxyacetohenone derivatives from Senecio graveolens. Phytochem 24:1600–1602CrossRefGoogle Scholar
  15. Ma Y-T, Fan H-F, Gao Y-Q, Li H, Zhang A-L, Gao J-M (2013) Natural products as sources of new fungicides (I): synthesis and antifungal activity of acetophenone derivatives against phytopathogenic fungi. Chem Biol Drug Design 81:545–552CrossRefGoogle Scholar
  16. Maioli MA, Alves LC, Campanini AL, Lima MC, Dorta DJ, Groppo M, Cavalheiro AJ, Curti C, Mingatto FE (2010) Iron chelating-mediated antioxidant activity of Plectranthus barbatus extract on mitochondria. Food Chem 122:203–208CrossRefGoogle Scholar
  17. Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 65:1CrossRefGoogle Scholar
  18. Onyewu C, Wormley FL Jr, Perfect JR, Heitman J (2004) The calcineurin target, crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infect Immun 72:7330–7333PubMedCentralCrossRefPubMedGoogle Scholar
  19. Pfaller MA, Messer SA, Boyken L, Rice C, Tendolkar S, Hollis RJ, Diekema DJ (2004) Further standardization of broth microdilution methodology for in vitro susceptibility testing of caspofungin against Candida species by use of an international collection of more than 3000 clinical isolates. J Clin Microbiol 42:3117–3119PubMedCentralCrossRefPubMedGoogle Scholar
  20. Prasad T, Chandra A, Mukhopadhyay CK, Prasad R (2006) Unexpected link between iron and drug resistance of Candida spp.: iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells. Antimicrob Agents Chemother 50:3597–3606PubMedCentralCrossRefPubMedGoogle Scholar
  21. Reedy JL, Filler SG, Heitman J (2010) Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genet Biol 47:107–116PubMedCentralCrossRefPubMedGoogle Scholar
  22. Ríos JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharm 100:80–84CrossRefGoogle Scholar
  23. Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J (2003) Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol 48:959–976CrossRefPubMedGoogle Scholar
  24. Soberón JR, Sgariglia MA, Sampietro DA, Quiroga EN, Vattuone MA (2007) Antibacterial activity of plant extracts from northwestern Argentina. J Appl Microbiol 102:1450–1461CrossRefPubMedGoogle Scholar
  25. Steinbach WJ, Schell WA, Blankenship WR, Onyewu C, Heitman J, Perfect JR (2004) In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. Antimicrob Agents Chemother 48:1664–1669PubMedCentralCrossRefPubMedGoogle Scholar
  26. Tobudic S, Kratzer C, Lassnigg A, Graninger W, Presterl E (2010) In vitro activity of antifungal combinations against Candida albicans biofilms. J Antimicrob Chemother 65:271–274CrossRefPubMedGoogle Scholar
  27. Tomás-Barberán F, Iniesta-San Martín E, Tomás-Lorente F, Romero A (1990) Antimicrobial phenolic compounds from three spanish Helicrysum species. Phytochem 29:1093–1095CrossRefGoogle Scholar
  28. Uppuluri P, Nett J, Heitman J, Andes D (2008) Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother 52:1127–1132PubMedCentralCrossRefPubMedGoogle Scholar
  29. White TC, Holleman S, Dy F, Mirels LF, Stevens DA (2002) Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother 46:1704–1713PubMedCentralCrossRefPubMedGoogle Scholar
  30. Xu N, Qian K, Dong Y, Chen Y, Yu Q, Zhang B, Xing L, Li M (2014) Novel role of the Candida albicans ferric reductase gene CFL1 in iron acquisition, oxidative stress tolerance, morphogenesis and virulence. Res Microbiol 165:252–261CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • José R. Soberón
    • 1
    • 2
    • 3
    Email author
  • Emilio F. Lizarraga
    • 1
    • 3
    • 4
  • Melina A. Sgariglia
    • 1
    • 2
    • 3
  • María B. Carrasco Juárez
    • 1
    • 2
    • 3
  • Diego A. Sampietro
    • 1
    • 2
    • 3
  • Aida Ben Altabef
    • 1
    • 3
    • 4
  • César A. N. Catalán
    • 1
    • 3
    • 4
  • Marta A. Vattuone
    • 2
    • 3
  1. 1.Universidad Nacional de TucumánSan Miguel De TucumánArgentina
  2. 2.Laboratorio de Biología de Agentes Bioactivos y Fitopatógenos (LABIFITO), Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánSan Miguel De TucumánArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma De Buenos AiresArgentina
  4. 4.Instituto de Química del Noroeste Argentino (INQUINOA)CONICETSan Miguel De TucumánArgentina

Personalised recommendations