Advertisement

Antonie van Leeuwenhoek

, Volume 108, Issue 4, pp 933–950 | Cite as

New species of Ophiostomatales from Scolytinae and Platypodinae beetles in the Cape Floristic Region, including the discovery of the sexual state of Raffaelea

  • Tendai Musvuugwa
  • Z. Wilhelm de Beer
  • Tuan A. Duong
  • Léanne L. Dreyer
  • Kenneth C. Oberlander
  • Francois RoetsEmail author
Original Paper

Abstract

Olea capensis and Rapanea melanophloeos are important canopy trees in South African Afromontane forests. Dying or recently dead individuals of these trees are often infested by Scolytinae and Platypodinae (Curculionidae) beetles. Fungi were isolated from the surfaces of beetles emerging from wood samples and their galleries. Based on micro-morphological and phylogenetic analyses, four fungal species in the Ophiostomatales were isolated. These were Sporothrix pallida and three taxa here newly described as Sporothrix aemulophila sp. nov., Raffaelea vaginata sp. nov. and Raffaelea rapaneae sp. nov. This study represents the first collection of S. pallida, a species known from many environmental samples from across the world, from Scolytinae beetles. S. aemulophila sp. nov. is an associate of the ambrosia beetle Xyleborinus aemulus. R. rapaneae sp. nov. and R. vaginata sp. nov. were associated with a Lanurgus sp. and Platypodinae beetle, respectively, and represent the first Raffaelea spp. reported from the Cape Floristic Region. Of significance is that R. vaginata produced a sexual state analogous with those of Ophiostoma seticolle and O. deltoideosporum that also grouped in our analyses in Raffaelea s. str., to date considered an asexual genus. The morphology of the ossiform ascospores and anamorphs of the three species corresponded and the generic circumscription of Raffaelea is thus emended to accommodate sexual states. The two known species are provided with new combinations, namely Raffaelea seticollis (R.W. Davidson) Z.W. de Beer and T.A. Duong comb. nov. and Raffaelea deltoideospora (Olchow. and J. Reid) Z.W. de Beer and T.A. Duong comb. nov.

Keywords

Olea Ophiostoma Platypodinae Raffaelea Rapanea Scolytinae 

Notes

Acknowledgments

The authors thank the DST/NRF Centre of Excellence in Tree Health Biotechnology (CHTB) for financial support and the South African National Parks Board (SANPARKS) and Western Cape Nature Conservation Board for issuing the necessary collecting permits. We are also grateful to Netsai Machingambi, PC Benade and Dewidine van der Colff for assistance with field work and Jane Forrester for permission to work on trees in the Harold Porter National Botanical Garden. Special thanks to Michail Mandelshtam for identification of the beetles collected in this study.

Compliance with ethical standards

Conflict of interest

None.

Supplementary material

10482_2015_547_MOESM1_ESM.doc (54 kb)
Supplementary material 1 (DOC 54 kb)
10482_2015_547_MOESM2_ESM.ppt (150 kb)
Supplementary material 2 (PPT 149 kb)

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  2. Alamouti SM, Tsui CKM, Breuil C (2009) Multigene phylogeny of filamentous ambrosia fungi associated with ambrosia and bark beetles. Mycol Res 113:822–835CrossRefGoogle Scholar
  3. Atkinson TH, Equihua A (1986) Source biology of the scolytidae and platypodidae (Coleoptera) in a tropical deciduous forest at Chamela, Jalisco, Mexico. Fla Entomol 69:303–310CrossRefGoogle Scholar
  4. Atkinson TH, Peck SB (1994) Annotated checklist of the bark and ambrosia beetles (Coleoptera: Platypodidae and Scolytidae) of tropical southern florida. Fla Entomol 77:313–329CrossRefGoogle Scholar
  5. Avtzis DN, Bertheau C, Stauffer C (2012) What is next in bark beetle hylogeography? Insects 3:453–472CrossRefGoogle Scholar
  6. Baker JM (1963) Ambrosia beetles and their fungi with particular reference to Platypus cylindrus Fab. In: Nutman PS, Mosse B (eds) Symbiotic associations, 13th symposium Society for General Microbiology. Cambridge University Press, Cambrage, pp 232–265Google Scholar
  7. Barras SJ, Perry TJ (1972) Fungal symbionts in the prothoracic mycangium of Dendrocfonus frontalis. Z Angew Entomol 7:95–104Google Scholar
  8. Batra LR (1966) Ambrosia fungi: extent of specificity to ambrosia beetles. Science 153:193–195CrossRefPubMedGoogle Scholar
  9. Batra LR (1967) Ambrosia fungi: a taxonomic revision, and nutritional studies of some species. Mycologia 59:976–1017CrossRefGoogle Scholar
  10. Beaver AR (1989) Insect-fungus relationships in the bark and ambrosia beetles. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions. Academic Press, United Kingdom, pp 121–143CrossRefGoogle Scholar
  11. Beaver AR (2005) A remarkable new species of Cyclorhipidion hagedorn, and new records of bark and ambrosia beetles from Gabon (Coleoptera: Curculionidae, Scolytinae and Platypodinae). Entomol Mon Mag 141:113–119Google Scholar
  12. Beaver AR, Liu L-Y (2013) A synopsis of the pine-hole borers of Thailand (Coleoptera: Curculionidae: Platypodinae). Zootaxa 3646:447–486CrossRefPubMedGoogle Scholar
  13. Berryman AA (1972) Resistance of conifers to invasion by bark beetle fungus associations. Bioscience 22:598–602CrossRefGoogle Scholar
  14. Biedermann PHW (2012) Evolution of cooperation in ambrosia beetles. Dissertation, University of BernGoogle Scholar
  15. Brasier CM (2000) Intercontinental spread and continuing evolution of the Dutch elm disease pathogens. In: Dunn CP (ed) The elms: breeding, conservation and disease management. Kluwer Academic Publishers, USA, pp 61–72CrossRefGoogle Scholar
  16. Brasier CM, Buck KW (2001) Rapid evolutionary changes in a globally invading fungal pathogen (Dutch elm disease). Biol Invasions 3:223–233CrossRefGoogle Scholar
  17. Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148PubMedCentralCrossRefPubMedGoogle Scholar
  18. Bridges JR, Moser JC (1983) Role of two phoretic mites in transmission of bluestain fungus, Ceratocystis minor. Ecol Entomol 8:9–12CrossRefGoogle Scholar
  19. Browne FG (1968) Pests and diseases of forest plantation trees. Clarendon Press, OxfordGoogle Scholar
  20. Cassar S, Blackwell M (1996) Convergent origins of ambrosia fungi. Mycologia 88:596–601CrossRefGoogle Scholar
  21. Chen SF, Wingfield MJ, Roets F, Roux J (2013) A serious canker disease caused by Immersiporthe knoxdaviesiana gen. et sp. nov. (Cryphonectriaceae) on native Rapanea in South Africa. Plant Pathol 62:667–678CrossRefGoogle Scholar
  22. Davidison RW (1966) New species of Ceratocystis from conifers. Mycopath Mycol Appl 28:273–286CrossRefGoogle Scholar
  23. De Beer ZW, Wingfield MJ (2013) Emerging lineages in Ophiostomatales. In: Seifert KA, De Beer ZW and Wingfield MJ (eds) Ophiostomatoid fungi: expanding frontiers, CBS Biodiversity Series 12, pp 21–46Google Scholar
  24. De Beer ZW, Seifert KA, Wingfield MJ (2013) A nomenclature for ophiostomatoid genera and species in the Ophiostomatales and Microascales. In: Seifert KA, De Beer ZW and Wingfield MJ (eds) Ophiostomatoid fungi: expanding frontiers, CBS Biodiversity Series 12, pp 245–322Google Scholar
  25. De Fine Licht HH, Biedermann PHW (2012) Patterns of functional enzyme activity in fungus farming ambrosia beetles. Front Zool 9:13PubMedCentralCrossRefPubMedGoogle Scholar
  26. De Meyer EM, De Beer ZW, Summerbell RC, Moharram AM, De Hoog GS, Vismer HF, Wingfield MJ (2008) Taxonomy and phylogeny of new wood- and soil-inhabiting Sporothrix species in the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 100:647–661CrossRefPubMedGoogle Scholar
  27. Dreaden TJ, Davis JM, De Beer ZW, Ploetz RC, Soltis PS, Wingfield MJ, Smith JA (2014) Phylogeny of ambrosia beetle symbionts in the genus Raffaelea. Fungal Biol 118:970–978CrossRefPubMedGoogle Scholar
  28. Duong TA, De Beer ZW, Wingfield BD, Wingfield MJ (2012) Phylogeny and taxonomy of species in the Grosmannia serpens complex. Mycologia 104:715–732CrossRefPubMedGoogle Scholar
  29. Farrell BD, Sequeira AS, O’Meara BC, Normark BB, Chung JH, Jordal BH (2001) The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027CrossRefPubMedGoogle Scholar
  30. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118CrossRefPubMedGoogle Scholar
  31. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedCentralPubMedGoogle Scholar
  32. Guerrero RT (1966) Una nueva especie de hongo inperfecto asociado con el coleoptero Platypus sulcatus Chapius. Revista de Investigciones Agropecuarias Series 3:97–103Google Scholar
  33. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  34. Hafez M, Majer A, Sethuraman J, Rudski SM, Michel F, Hausner G (2013) The mtDNA rns gene landscape in the Ophiostomatales and other fungal taxa: twintrons, introns, and intron-encoded proteins. Fungal Genet Biol 53:71–83CrossRefPubMedGoogle Scholar
  35. Harrington TC (1981) Cycloheximide sensitivity as a taxonomic character in Ceratocystis. Mycologia 73:1123–1129Google Scholar
  36. Harrington TC (1993) Biology and taxonomy of fungi associated with bark beetles. In: Schowalter TD, Filip GM (eds) Beetle-pathogen interactions in conifer forests. Academic Press, New York, pp 37–58Google Scholar
  37. Harrington TC (2005) Ecology and evolution of mycophagous bark beetles and their fungal partners. In: Vega FE, Blackwell M (eds) Insect-fungal associations: ecology and evolution. Oxford University Press, New York, pp 1–22Google Scholar
  38. Harrington TC, Fraedrich SW, Aghayeva DN (2008) Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104:399–404Google Scholar
  39. Harrington TC, Aghayeva DN, Fraedrich SW (2010) New combinations in Raffaelea, Ambrosiella, and Hyalorhinocladiella, and four new species from the redbay ambrosia beetle, Xyleborus glabratus. Mycotaxon 111:337–361CrossRefGoogle Scholar
  40. Hausner G, Reid J (2003) Notes on Ceratocystis brunnea and some other Ophiostoma species based on partial ribosomal DNA sequence analysis. Can J Bot 81:865–876CrossRefGoogle Scholar
  41. Hausner G, Reid J, Klassen GR (1993) On the phylogeny of Ophiostoma, Ceratocystis s.s., and Microascus, and relationships within Ophiostoma based on partial ribosomal DNA sequences. Can J Botany 71:1249–1265CrossRefGoogle Scholar
  42. Hawksworth DL (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. MycoKeys 1:7–20CrossRefGoogle Scholar
  43. Hawksworth DL, Crous PW, Redhead SA et al (2011) The Amsterdam declaration on fungal nomenclature. IMA Fungus 2:105–112PubMedCentralCrossRefPubMedGoogle Scholar
  44. Heybroek HM (1993) Why bother about the elm? In: Sticklen MB, Sherald JL (eds) Dutch elm disease research, cellular and molecular approaches. Springer-Verlag, New York, pp 1–8CrossRefGoogle Scholar
  45. Jacobs K, Wingfield MJ (2001) Leptographium species: tree pathogens, insect associates, and agents of blue-stain. APS press, St. PaulGoogle Scholar
  46. Jacobs K, Seifert KA, Harrison KJ, Kirisits T (2003) Identity and phylogenetic relationships of ophiostomatoid fungi associated with invasive and native Tetropium species (Coleoptera: Cerambycidae) in Atlantic Canada. Can J Botany 81:316–329CrossRefGoogle Scholar
  47. Jordal BH, Cognato AI (2012) Molecular phylogeny of bark and ambrosia beetles reveals multiple origins of fungus farming during periods of global warming. BMC Evol Biol 12:133PubMedCentralCrossRefPubMedGoogle Scholar
  48. Jordal BH, Beaver RA, Kirkendall LR (2001) Breaking taboos in the tropics: inbreeding promotes colonization by wood-boring beetles. Global Ecol Biogeogr 10:345–357CrossRefGoogle Scholar
  49. Kamgan Nkuekam G, Jacobs K, De Beer ZW, Wingfield MJ, Roux J (2008) Ceratocystis and Ophiostoma species including three new taxa, associated with wounds on native South African trees. Fungal Divers 29:37–59Google Scholar
  50. Kamgan Nkuekam G, De Beer ZW, Wingfield MJ, Roux J (2012) A diverse assemblage of Ophiostoma species, including two new taxa on eucalypt trees in South Africa. Mycol Progr 11:515–533CrossRefGoogle Scholar
  51. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298CrossRefPubMedGoogle Scholar
  52. Klepzig KD, Six DL (2004) Bark beetle-fungal symbiosis: context dependency in complex associations. Symbiosis 37:189–205Google Scholar
  53. Klepzig KD, Moser JC, Lombardero FJ, Hofstetter RW, Ayres MP (2001) Symbiosis and competition: complex interactions among beetles, fungi and mites. Symbiosis 30:83–96Google Scholar
  54. Knižek M, Beaver R (2004) Taxonomy and systematics of bark and ambrosia beetles. In: Lieutier F, Day KR, Battisti A, Grégoire J-C, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Kluwer Academic Publishers, The Netherlands, pp 41–54Google Scholar
  55. Kubono T, Ito S (2002) Raffaelea quercivora sp. nov. associated with mass mortality of Japanese oak, and the ambrosia beetle (Platypus quercivorus). Mycoscience 43:255–260CrossRefGoogle Scholar
  56. Linnakoski R, De Beer ZW, Ahtiainen J, Sidorov E, Niemelä P, Pappinen A, Wingfield MJ (2010) Ophiostoma spp. associated with pine and spruce-infesting bark beetles in Finland and Russia. Persoonia 25:72–93PubMedCentralCrossRefPubMedGoogle Scholar
  57. Morrison AS, Lockhart SR, Bromley JG, Kim JY, Burd EM (2013) An environmental Sporothrix as a cause of corneal ulcer. Med Mycol Case Rep 2:88–90PubMedCentralCrossRefPubMedGoogle Scholar
  58. Mullineux T, Hausner G (2009) Evolution of rDNA ITS1 and ITS2 sequences and RNA secondary structures within members of the fungal genera Grosmannia and Leptographium. Fungal Genet Biol 46:855–867CrossRefPubMedGoogle Scholar
  59. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116Google Scholar
  60. Olchowecki A, Reid J (1974) Taxonomy of the genus Ceratocystis in Manitoba. Can J Bot 52:1675–1711Google Scholar
  61. Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206CrossRefPubMedGoogle Scholar
  62. Pipe ND, Brasier CM, Buck KW (2000) Evolutionary relationships of the Dutch elm disease fungus Ophiostoma novo-ulmi to other Ophiostoma species investigated by restriction fragment length polymorphism analysis of the rDNA region. J Phytopathol 148:533–539CrossRefGoogle Scholar
  63. Ploetz RC, Hulcr J, Wingfield MJ, de Beer ZW (2013) Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Dis 97:856–872CrossRefGoogle Scholar
  64. Posada D (2008) Selection of models of DNA evolution with jModelTest. In: Posada D (ed) Bioinformatics for DNA sequence analysis. Humana Press, Totowa, pp 93–112Google Scholar
  65. Roets F, de Beer ZW, Dreyer LL, Crous PW, Zipfel R, Wingfield MJ (2006) Multigene phylogeny of Ophiostoma spp. associated with Protea infrutescenses including two new species. Stud Mycol 55:199–212PubMedCentralCrossRefPubMedGoogle Scholar
  66. Roets F, Wingfield MJ, Crous PW, Dreyer LL (2007) Discovery of fungus-mite mutualism in a unique niche. Environ Entomol 36:1226–1237CrossRefPubMedGoogle Scholar
  67. Roets F, Dreyer LL, Crous PW, Wingfield MJ (2009) Mite-mediated hyperphoretic dispersal of Ophiostoma spp. from the infructescences of South African Protea spp. Environ Entomol 38:143–152CrossRefPubMedGoogle Scholar
  68. Romón P, De Beer ZW, Fernández M, Diez J, Wingfield BD, Wingfield MJ (2014a) Ophiostomatoid fungi including two new fungal species associated with pine root-feeding beetles in northern Spain. Anton Leeuw 106:1167–1184CrossRefGoogle Scholar
  69. Romón P, De Beer ZW, Zhou X, Duong TA, Wingfield BD, Wingfield MJ (2014b) Multigene phylogenies of Ophiostomataceae associated with Monterey pine bark beetles in Spain reveal three new fungal species. Mycologia 106:119–132CrossRefPubMedGoogle Scholar
  70. Ronquist FR, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542PubMedCentralCrossRefPubMedGoogle Scholar
  71. Roux J, Malan R, Howitt M, Six DL, Wingfield MJ (2009) Fungi associated with diseased Euphorbia ingens in South Africa. In: 46th biannual conference of the Southern African Society for Plant Pathology, 25–28 Jan 2009, Gordons Bay, South AfricaGoogle Scholar
  72. Schedl KE (1972) Monographie der Famile Platypodidae (Coleoptera). W. Junk, The Hague, p 322Google Scholar
  73. Scott DB, Du Toit JW (1970) Three new Raffaelea species. Trans Br Mycol Soc 55:181–186CrossRefGoogle Scholar
  74. Six DL (2003) Bark beetle-fungus symbioses. In: Bourtzis K, Miller T (eds) Insect Symbioses. CRS press, Boca Raton, pp 97–114CrossRefGoogle Scholar
  75. Six DL (2012) Ecological and evolutionary determinants of bark beetle—fungus symbioses. Insects 3:339–366CrossRefGoogle Scholar
  76. Six DL, Wingfield MJ (2011) The role of phytopathogenicity in bark beetle–fungus symbioses: a challenge to the classic paradigm. Annu Rev Entomol 56:255–272CrossRefPubMedGoogle Scholar
  77. Taerum SJ, Duong TA, De Beer ZW, Gillette N, Sun J-H, Owen DR, Wingfield MJ (2013) Large shift in symbiont assemblage in the invasive red turpentine beetle. PLoS One 8:e78126PubMedCentralCrossRefPubMedGoogle Scholar
  78. Upadhyay HP (1981) A monograph of Ceratocystis and Ceratocystiopsis. University of Georgia Press, AthensGoogle Scholar
  79. Van Der Linde JA, Roux J, Wingfield MJ, Six DL (2012) Die-off of giant Euphorbia trees in South Africa: symptoms and relationships to climate. S Afr J Bot 83:172–185CrossRefGoogle Scholar
  80. Van Wyk B, VanWyk P (1997) Field guide to trees of southern Africa. Struik Publishers, Cape TownGoogle Scholar
  81. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246PubMedCentralPubMedGoogle Scholar
  82. Webber JF (1990) The relative effectiveness of Scolytus scolytus, S. multistriatus and S. kirschii as vectors of Dutch elm disease. Eur J For Pathol 20:184–192CrossRefGoogle Scholar
  83. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MS, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A sequencing guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  84. Whitney HS (1982) Relationships in bark beetles and symbiotic organisms. In: Mitton JB, Sturgeon KB (eds) Bark beetles in North America conifers. University of Texas, Austin, pp 183–211Google Scholar
  85. Wingfield MJ (1987) Fungi associated with the pine wood nematode, Bursaphelenchus xylophilus, and cerambycid beetles in Wisconsin. Mycologia 79:325–328CrossRefGoogle Scholar
  86. Wingfield MJ, Harrington TC, Solheim H (1995) Do conifer bark beetles require fungi to kill trees? In: Christiansen E (ed) Proceedings of bark beetles, blue-stain fungi, and conifer defense systems, Norwegian Forest Research Institute Symposium, Norway, p 6Google Scholar
  87. Wood SL, Bright DE (1992) A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: taxonomic index. Great Basin Nat Mem 13:1–1553Google Scholar
  88. Zhou XD, De Beer ZW, Wingfield BD, Wingfield MJ (2001) Ophiostomatoid fungi associated with three pine-infesting bark beetles in South Africa. Sydowia 53:290–300Google Scholar
  89. Zhou XD, De Beer ZW, Cibrian D, Wingfield BD, Wingfield MJ (2004) Characterisation of Ophiostoma species associated with pine bark beetles from Mexico, including O. pulvinisporum sp. nov. Mycol Res 108:690–698CrossRefPubMedGoogle Scholar
  90. Zhou XD, De Beer ZW, Wingfield MJ (2006) DNA sequence comparisons of Ophiostoma spp., including Ophiostoma aurorae sp. nov., associated with pine bark beetles in South Africa. Stud Mycol 55:269–277PubMedCentralCrossRefPubMedGoogle Scholar
  91. Zipfel RD, De Beer ZW, Jacobs K, Wingfield BD, Wingfield MJ (2006) Multi-gene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Stud Mycol 55:75–97PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tendai Musvuugwa
    • 1
  • Z. Wilhelm de Beer
    • 2
  • Tuan A. Duong
    • 3
  • Léanne L. Dreyer
    • 1
    • 4
  • Kenneth C. Oberlander
    • 5
    • 6
  • Francois Roets
    • 4
    • 6
    Email author
  1. 1.Department of Botany and ZoologyStellenbosch UniversityStellenboschSouth Africa
  2. 2.Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  3. 3.Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  4. 4.DST/NRF Centre of Excellence in Tree Health Biotechnology (CTHB), Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaHatfieldSouth Africa
  5. 5.Institute of BotanyAcademy of SciencesPrůhoniceCzech Republic
  6. 6.Department of Conservation Ecology and EntomologyStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations