Antonie van Leeuwenhoek

, Volume 108, Issue 3, pp 765–781 | Cite as

A phylogenomic and molecular markers based analysis of the phylum Chlamydiae: proposal to divide the class Chlamydiia into two orders, Chlamydiales and Parachlamydiales ord. nov., and emended description of the class Chlamydiia

  • Radhey S. GuptaEmail author
  • Sohail Naushad
  • Chirayu Chokshi
  • Emma Griffiths
  • Mobolaji Adeolu
Original Paper


The phylum Chlamydiae contains nine ecologically and genetically diverse families all placed within a single order. In this work, we have completed a comprehensive comparative analysis of 36 sequenced Chlamydiae genomes in order to identify shared molecular characteristics, namely conserved signature insertions/deletions (CSIs) and conserved signature proteins (CSPs), which can serve as distinguishing characteristics of supra-familial clusters within the phylum Chlamydiae. Our analysis has led to the identification of 32 CSIs which are specific to clusters within the phylum Chlamydiae at various phylogenetic depths. Importantly, 17 CSIs and 98 CSPs were found to be specific for the family Chlamydiaceae while another 3 CSI variants and 15 CSPs were specific for a grouping of the families Criblamydiaceae, Parachlamydiaceae, Simkaniaceae and Waddliaceae. These two clusters were also found to be distinguishable in 16S rRNA based phylogenetic trees, concatenated protein based phylogenetic trees, character compatibility based phylogenetic analyses, and on the basis of 16S rRNA gene sequence identity and average amino acid identity values. On the basis of the identified molecular characteristics, branching in phylogenetic trees, and the genetic distance between the two clusters within the phylum Chlamydiae we propose a division of the class Chlamydiia into two orders: an emended order Chlamydiales, containing the family Chlamydiaceae and the closely related Candidatus family Clavichlamydiaceae, and the novel order Parachlamydiales ord. nov. containing the families Parachlamydiaceae, Simkaniaceae and Waddliaceae and the Candidatus families Criblamydiaceae, Parilichlamydiaceae, Piscichlamydiaceae, and Rhabdochlamydiaceae. We also include a brief discussion of the reunification of the genera Chlamydia and Chlamydophila.


Chlamydiae Chlamydiales Parachlamydiales Phylogeny Taxonomy Conserved signature indel Conserved signature protein Character compatibility 

Supplementary material

10482_2015_532_MOESM1_ESM.pdf (3.2 mb)
Supplementary material 1 (PDF 3261 kb)


  1. Abdelrahman YM, Belland RJ (2005) The chlamydial developmental cycle. FEMS Microbiol Rev 29(5):949–959PubMedCrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  3. Belinky F, Cohen O, Huchon D (2010) Large-scale parsimony analysis of metazoan indels in protein-coding genes. Mol Biol Evol 27(2):441–451PubMedCrossRefGoogle Scholar
  4. Bhandari V, Gupta RS (2014) Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. Anton Leeuw Int J G 105(1):143–168CrossRefGoogle Scholar
  5. Bush RM, Everett KD (2001) Molecular evolution of the Chlamydiaceae. Int J Syst Evol Microbiol 51(Pt 1):203–220PubMedGoogle Scholar
  6. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552PubMedCrossRefGoogle Scholar
  7. Cole J, Wang Q, Fish J, Chai B, McGarrell D, Sun Y, Brown C, Porras-Alfaro A, Kuske C, Tiedje J (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(1):D633PubMedCentralPubMedCrossRefGoogle Scholar
  8. Collingro A, Tischler P, Weinmaier T, Penz T, Heinz E, Brunham RC, Read TD, Bavoil PM, Sachse K, Kahane S et al (2011) Unity in variety—the pan-genome of the Chlamydiae. Mol Biol Evol 28(12):3253–3270PubMedCentralPubMedCrossRefGoogle Scholar
  9. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461PubMedCrossRefGoogle Scholar
  10. Everett KD, Bush RM, Andersen AA (1999) Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49(Pt 2):415–440PubMedCrossRefGoogle Scholar
  11. Everett KD, Thao M, Horn M, Dyszynski GE, Baumann P (2005) Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. Int J Syst Evol Microbiol 55(Pt 4):1581–1587PubMedCrossRefGoogle Scholar
  12. Felsenstein J (2005) PHYLIP: phylogenetic inference program, version 3.6. University of Washington, SeattleGoogle Scholar
  13. Gao B, Gupta RS (2012) Microbial systematics in the post-genomics era. Anton Leeuw Int J G 101(1):45–54CrossRefGoogle Scholar
  14. Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19(12):2226–2238PubMedCrossRefGoogle Scholar
  15. Greub G (2010a) International Committee on Systematics of Prokaryotes. Subcommittee on the taxonomy of the Chlamydiae: minutes of the closed meeting, 21 June 2010, Hof bei Salzburg, Austria. Int J Syst Evol Microbiol 60(Pt 11):2694PubMedCrossRefGoogle Scholar
  16. Greub G (2010b) International Committee on Systematics of Prokaryotes. Subcommittee on the taxonomy of the Chlamydiae: minutes of the inaugural closed meeting, 21 March 2009, Little Rock, AR, USA. Int J Syst Evol Microbiol 60(Pt 11):2691–2693PubMedCrossRefGoogle Scholar
  17. Greub G (2013) International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Chlamydiae minutes of the closed meeting, 23 February 2011, Ascona, Switzerland. Int J Syst Evol Microbiol 63(Pt 5):1934–1935CrossRefGoogle Scholar
  18. Griffiths E, Gupta RS (2007) Phylogeny and shared conserved inserts in proteins provide evidence that Verrucomicrobia are the closest known free-living relatives of chlamydiae. Microbiology 153(8):2648–2654PubMedCrossRefGoogle Scholar
  19. Griffiths E, Petrich AK, Gupta RS (2005) Conserved indels in essential proteins that are distinctive characteristics of Chlamydiales and provide novel means for their identification. Microbiology 151(8):2647–2657PubMedCrossRefGoogle Scholar
  20. Griffiths E, Ventresca MS, Gupta RS (2006) BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species. BMC Genomics 7:14PubMedCentralPubMedCrossRefGoogle Scholar
  21. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321PubMedCrossRefGoogle Scholar
  22. Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62(4):1435PubMedCentralPubMedGoogle Scholar
  23. Gupta RS (2014) Identification of conserved indels that are useful for classification and evolutionary studies Methods in Microbiology, vol 41. Academic Press, OxfordGoogle Scholar
  24. Gupta RS, Griffiths E (2002) Critical issues in bacterial phylogeny. Theor Popul Biol 61(4):423–434PubMedCrossRefGoogle Scholar
  25. Gupta RS, Griffiths E (2006) Chlamydiae-specific proteins and indels: novel tools for studies. Trends Microbiol 14(12):527–535PubMedCrossRefGoogle Scholar
  26. Gupta RS, Mok A (2007) Phylogenomics and signature proteins for the Alphaproteobacteria and its main groups. BMC Microbiol 7(1):106PubMedCentralPubMedCrossRefGoogle Scholar
  27. Gupta RS, Sneath PH (2007) Application of the character compatibility approach to generalized molecular sequence data: branching order of the proteobacterial subdivisions. J Mol Evol 64(1):90–100PubMedCrossRefGoogle Scholar
  28. Gupta RS, Bhandari V, Naushad HS (2012) Molecular signatures for the PVC clade (Planctomycetes, Verrucomicrobia, Chlamydiae, and Lentisphaerae) of bacteria provide insights into their evolutionary relationships. Front Microbiol 3:327PubMedCentralPubMedGoogle Scholar
  29. Gupta RS, Naushad S, Baker S (2014) Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov. Int J Syst Evol Microbiol 65:1050–1069PubMedCrossRefGoogle Scholar
  30. Hamel AM, Steel M (1996) Finding a maximum compatible tree is NP-hard for sequences and trees. Appl Math Lett 9(2):55–59CrossRefGoogle Scholar
  31. Holland BR, Spencer HG, Worthy TH, Kennedy M (2010) Identifying cliques of convergent characters: concerted evolution in the cormorants and shags. Syst Biol 59(4):433–445PubMedCrossRefGoogle Scholar
  32. Horn M (2008) Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol 62:113–131PubMedCrossRefGoogle Scholar
  33. Horn M (2011a) Class I. Chlamydiia class. nov. In: Krieg N, Staley J, Brown D, Hedlund B, Paster B, Ward N, Ludwig W, Whitman W (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, p 844Google Scholar
  34. Horn M (2011b) Family II. “Candidatus Clavichlamydiaceae”. In: Krieg N, Staley J, Brown D, Hedlund B, Paster B, Ward N, Ludwig W, Whitman W (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, p 865Google Scholar
  35. Horn M (2011c) Family V. “Candidatus Piscichlamydiaceae”. In: Krieg N, Staley J, Brown D, Hedlund B, Paster B, Ward N, Ludwig W, Whitman W (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, p 872Google Scholar
  36. Horn M (2011d) Family VI. Rhabdochlamydiaceae fam. nov. In: Krieg N, Staley J, Brown D, Hedlund B, Paster B, Ward N, Ludwig W, Whitman W (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, p 873Google Scholar
  37. Horn M (2011e) Phylum XXIV. Chlamydiae Garrity and Holt 2001. In: Krieg N, Staley J, Brown D, Hedlund B, Paster B, Ward N, Ludwig W, Whitman W (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 843–844Google Scholar
  38. Horn M, Wagner M (2001) Evidence for additional genus-level diversity of Chlamydiales in the environment. FEMS Microbiol Lett 204(1):71–74PubMedCrossRefGoogle Scholar
  39. Horn M, Collingro A, Schmitz-Esser S, Beier CL, Purkhold U, Fartmann B, Brandt P, Nyakatura GJ, Droege M, Frishman D et al (2004) Illuminating the evolutionary history of chlamydiae. Science 304(5671):728–730PubMedCrossRefGoogle Scholar
  40. Howard-Azzeh M, Shamseer L, Schellhorn HE, Gupta RS (2014) Phylogenetic analysis and molecular signatures defining a monophyletic clade of heterocystous cyanobacteria and identifying its closest relatives. Photosynth Res 122(2):171–185PubMedCrossRefGoogle Scholar
  41. Jacquier N, Viollier PH, Greub G (2015) The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol Rev 39(2):262–275PubMedCrossRefGoogle Scholar
  42. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23(10):403PubMedCrossRefGoogle Scholar
  43. Jones AL (2012) The future of taxonomy. In: Gadd GM, Sariaslani S (eds) Adv Appl Microbiol, vol 80, 1st edn. Academic Press Inc, San Diego, pp 23–35Google Scholar
  44. Jones H, Rake G, Stearns B (1945) Studies on lymphogranuloma venereum. III. The action of the sulfonamides on the agent of lymphogranuloma venereum. J Infect Dis 76:55–69CrossRefGoogle Scholar
  45. Kalman S, Mitchell W, Marathe R, Lammel C, Fan J, Hyman RW, Olinger L, Grimwood J, Davis RW, Stephens RS (1999) Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 21(4):385–389PubMedCrossRefGoogle Scholar
  46. Kamneva OK, Knight SJ, Liberles DA, Ward NL (2012) Analysis of genome content evolution in pvc bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle. Genome Biol Evol 4(12):1375–1390PubMedCentralPubMedCrossRefGoogle Scholar
  47. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64(Pt 2):346–351PubMedCrossRefGoogle Scholar
  48. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187(18):6258–6264PubMedCentralPubMedCrossRefGoogle Scholar
  49. Kuo C-C, Horn M, Stephens RS (2011) Order I. Chlamydiales Storz and Page 1971, 334AL. In: Krieg N, Staley J, Brown D, Hedlund B, Paster B, Ward N, Ludwig W, Whitman W (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 844–845Google Scholar
  50. Lagkouvardos I, Weinmaier T, Lauro FM, Cavicchioli R, Rattei T, Horn M (2014) Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae. ISME J 8(1):115–125PubMedCentralPubMedCrossRefGoogle Scholar
  51. Lan Y, Morrison JC, Hershberg R, Rosen GL (2014) POGO-DB—a database of pairwise-comparisons of genomes and conserved orthologous genes. Nucleic Acids Res 42(Database issue):D625–D632PubMedCentralPubMedCrossRefGoogle Scholar
  52. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25(7):1307–1320PubMedCrossRefGoogle Scholar
  53. Lory S (2014) The phylum Chlamydiae. In: Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 497–499Google Scholar
  54. Luan PT, Ryder OA, Davis H, Zhang YP, Yu L (2013) Incorporating indels as phylogenetic characters: impact for interfamilial relationships within Arctoidea (Mammalia: Carnivora). Mol Phylogenet Evol 66(3):748–756PubMedCrossRefGoogle Scholar
  55. Martel A, Adriaensen C, Sharifian-Fard M, Vandewoestyne M, Deforce D, Favoreel H, Bergen K, Spitzen-van der Sluijs A, Devisscher S, Adriaens T et al (2013) The novel ‘Candidatus Amphibiichlamydia ranarum’ is highly prevalent in invasive exotic bullfrogs (Lithobates catesbeianus). Environ Microbiol Rep 5(1):105–108PubMedCrossRefGoogle Scholar
  56. Naushad HS, Lee B, Gupta RS (2014) Conserved signature indels and signature proteins as novel tools for understanding microbial phylogeny and systematics: identification of molecular signatures that are specific for the phytopathogenic genera Dickeya, Pectobacterium and Brenneria. Int J Syst Evol Microbiol 64(2):366–383PubMedCrossRefGoogle Scholar
  57. Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE, Gupta RS (2015) A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie Van Leeuwenhoek 107(2):467–485PubMedCrossRefGoogle Scholar
  58. NCBI (2015) NCBI genome database.
  59. Pannekoek Y, Morelli G, Kusecek B, Morre SA, Ossewaarde JM, Langerak AA, van der Ende A (2008) Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis. BMC Microbiol 8:42PubMedCentralPubMedCrossRefGoogle Scholar
  60. Parte AC (2013) LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:D613–D616PubMedCentralPubMedCrossRefGoogle Scholar
  61. Pillonel T, Bertelli C, Salamin N, Greub G (2015) Taxogenomics of the order Chlamydiales. Int J Syst Evol Microbiol 65(Pt 4):1381–1393PubMedCrossRefGoogle Scholar
  62. Pisani D (2004) Identifying and removing fast-evolving sites using compatibility analysis: an example from the Arthropoda. Syst Biol 53(6):978–989PubMedCrossRefGoogle Scholar
  63. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490PubMedCentralPubMedCrossRefGoogle Scholar
  64. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC, Zhou J, Oren A, Zhang YZ (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196(12):2210–2215PubMedCentralPubMedCrossRefGoogle Scholar
  65. Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15(11):454–459PubMedCrossRefGoogle Scholar
  66. Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425(6960):798–804PubMedCrossRefGoogle Scholar
  67. Rurangirwa FR, Dilbeck PM, Crawford TB, McGuire TC, McElwain TF (1999) Analysis of the 16S rRNA gene of micro-organism WSU 86-1044 from an aborted bovine foetus reveals that it is a member of the order Chlamydiales: proposal of Waddliaceae fam. nov., Waddlia chondrophila gen. nov., sp. nov. Int J Syst Bacteriol 49(Pt 2):577–581PubMedCrossRefGoogle Scholar
  68. Sachse K, Bavoil PM, Kaltenboeck B, Stephens RS, Kuo CC, Rossello-Mora R, Horn M (2015) Emendation of the family Chlamydiaceae: proposal of a single genus, Chlamydia, to include all currently recognized species. Syst Appl Microbiol 38(2):99–103PubMedCrossRefGoogle Scholar
  69. Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429PubMedCentralPubMedCrossRefGoogle Scholar
  70. Schachter J, Stephens RS, Timms P, Kuo C, Bavoil PM, Birkelund S, Boman J, Caldwell H, Campbell LA, Chernesky M et al (2001) Radical changes to chlamydial taxonomy are not necessary just yet. Int J Syst Evol Microbiol 51(Pt 1):249 author reply 251–243 PubMedGoogle Scholar
  71. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7(1):539PubMedCentralPubMedCrossRefGoogle Scholar
  72. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313PubMedCentralPubMedCrossRefGoogle Scholar
  73. Stephens RS, Myers G, Eppinger M, Bavoil PM (2009) Divergence without difference: phylogenetics and taxonomy of Chlamydia resolved. FEMS Immunol Med Microbiol 55(2):115–119PubMedCrossRefGoogle Scholar
  74. Storz J, Page LA (1971) Taxonomy of the Chlamydiae: reasons for Classifying Organisms of the Genus Chlamydia, Family Chlamydiaceae, in a Separate Order, Chlamydiales ord. nov. Int J Syst Bacteriol 21(4):332–334CrossRefGoogle Scholar
  75. Stride M, Polkinghorne A, Miller T, Groff J, LaPatra S, Nowak B (2013) Molecular characterization of “Candidatus Parilichlamydia carangidicola”, a novel Chlamydia-like epitheliocystis agent in yellowtail kingfish, Seriola lalandi (Valenciennes), and the proposal of a new family, “Candidatus Parilichlamydiaceae” fam. nov. (order Chlamydiales). Appl Environ Microbiol 79(5):1590–1597PubMedCentralPubMedCrossRefGoogle Scholar
  76. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564–577PubMedCrossRefGoogle Scholar
  77. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729PubMedCentralPubMedCrossRefGoogle Scholar
  78. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Lectures on mathematics in the life sciences, 17th edn. American Mathematical Society, Providence, pp 57–86Google Scholar
  79. Thomas V, Casson N, Greub G (2006) Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. Environ Microbiol 8(12):2125–2135PubMedCrossRefGoogle Scholar
  80. Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17(3):241–249PubMedCrossRefGoogle Scholar
  81. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18(5):691–699PubMedCrossRefGoogle Scholar
  82. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462(7276):1056–1060PubMedCentralPubMedCrossRefGoogle Scholar
  83. Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W, Schleifer KH, Whitman WB, Euzeby J, Amann R, Rossello-Mora R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12(9):635–645PubMedCrossRefGoogle Scholar
  84. Yin-Long Q, Estabrook GF (2008) Inference of phylogenetic relationships among key angiosperm lineages using a compatibility method on a molecular data set. J Syst Evol 46(2):130–141Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Radhey S. Gupta
    • 1
    Email author
  • Sohail Naushad
    • 1
  • Chirayu Chokshi
    • 1
  • Emma Griffiths
    • 1
  • Mobolaji Adeolu
    • 1
  1. 1.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations