Antonie van Leeuwenhoek

, Volume 108, Issue 3, pp 649–658 | Cite as

Marinobacter adhaerens HP15 harbors two CzcCBA efflux pumps involved in zinc detoxification

  • Antje Stahl
  • Daniel Pletzer
  • Amna Mehmood
  • Matthias S. Ullrich
Original Paper

Abstract

Several members of the ubiquitously found γ-proteobacterial genus Marinobacter were described or assumed to inhabit marine environments naturally enriched in heavy metals. However, direct studies that describe the ability of this genus to occupy such environments have not been conducted. To cope with heavy metal stress, bacteria possess specific efflux pumps as tools for detoxification, among which the CzcCBA type efflux system is one representative. Previous studies showed that this system plays an important role in resistance towards cadmium, zinc, and cobalt. Up to now, no study had focused on characterization of Czc pumps in Marinobacter sp. or other marine prokaryotes. Herein, we elucidated the function of two CzcCBA pumps encoded by Marinobacter adhaerens HP15’s genome during exposure to cadmium, zinc, and cobalt. Single and double knock-out mutants lacking the corresponding two czcCBA operons were generated and analyzed in terms of their resistance profiles. Both operons appeared to be important for zinc resistance but had no role in tolerance towards cadmium or cobalt. One of the mutations was genetically complemented thereby restoring the wild type phenotype. In accordance with the resistance pattern, expression of the genes coding for both CzcCBA pumps was induced by zinc but neither by cadmium nor cobalt.

Keywords

CzcA Multidrug efflux pump Cupriavidus metallidurans CH34 Zinc Heavy metal resistance Czc operon 

Notes

Acknowledgments

This project was funded by the Helmholtz Graduate School for Polar and Marine Research (POLMAR) and Deutsche Forschungsgemeinschaft (UL 169/6-1). The authors would like to thank Dr. Helge Weingart for excellent technical suggestions on mutant generation and Desalegne Abebew Syit for help with cloning of knock-out plasmids.

Supplementary material

10482_2015_520_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)
10482_2015_520_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 14 kb)
10482_2015_520_MOESM3_ESM.docx (13 kb)
Supplementary material 3 (DOCX 12 kb)
10482_2015_520_MOESM4_ESM.docx (130 kb)
Supplementary material 4 (DOCX 130 kb)

References

  1. Abou-Shanab RAI, van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in Gram-positive and Gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367PubMedCrossRefGoogle Scholar
  2. Aguilera M, Jimenez-Pranteda ML, Kharroub K, Gonzalez-Paredes A, Durban JJ, Russell NJ, Ramos-Cormenzana A, Monteoliva-Sanchez M (2009) Marinobacter lacisalsi sp. nov., a moderately halophilic bacterium isolated from the saline-wetland wildfowl reserve “Fuente de Piedra” in southern Spain. Int J Syst Evol Microbiol 59:1691–1695PubMedCrossRefGoogle Scholar
  3. Caille O, Rossier C, Perron K (2007) A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J Bacteriol 189:4561–4568PubMedCentralPubMedCrossRefGoogle Scholar
  4. Gaerdes A, Kaeppel E, Shehzad A, Seebah S, Teeling H, Yarza P, Gloeckner FO, Grossart H, Ullrich MS (2010) Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand Genomic Sci 3:97–107CrossRefGoogle Scholar
  5. Gaerdes A, Iversen MH, Grossart H, Passow U, Ullrich MS (2011) Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J 5:436–445CrossRefGoogle Scholar
  6. Gaerdes A, Ramaye Y, Grossart H, Passow U, Ullrich MS (2012) Effects of Marinobacter adhaerens HP15 on polymer exudation by Thalassiosira weissflogii at different N: P ratios. Mar Ecol Prog Ser 461:1–14CrossRefGoogle Scholar
  7. Gauthier M, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand J (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576PubMedCrossRefGoogle Scholar
  8. Goldberg M, Pribyl T, Juhnke S, Nies D (1999) Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J Biol Chem 274:26065–26070PubMedCrossRefGoogle Scholar
  9. Goris J, De Vos P, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K, Vandamme P et al (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51:1773–1782PubMedCrossRefGoogle Scholar
  10. Grossart H, Schlingloff A, Bernhard M, Simon M, Brinkhoff T (2004) Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microbiol Ecol 47:387–396PubMedCrossRefGoogle Scholar
  11. Handley KM, Lloyd JR (2013) Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species. Front Microbiol 4:136PubMedCentralPubMedCrossRefGoogle Scholar
  12. Handley KM, Hery M, Lloyd JR (2009) Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. Int J Syst Evol Microbiol 59:1850CrossRefGoogle Scholar
  13. Hoang T, Karkhoff-Schweizer R, Kutchma A, Schweizer H (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86PubMedCrossRefGoogle Scholar
  14. Intorne AC, de Oliveira MVV, Pereira LdM, de Souza Filho GA (2012) Essential role of the czc determinant for cadmium, cobalt and zinc resistance in Gluconacetobacter diazotrophicus PAI 5. Int Microbiol 15:69–78PubMedGoogle Scholar
  15. Jones P, Binns D, Chang H, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong S, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240PubMedCentralPubMedCrossRefGoogle Scholar
  16. Kaeppel EC, Gaerdes A, Seebah S, Grossart H, Ullrich MS (2012) Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the diatom Thalassiosira weissflogii. Int J Syst Evol Microbiol 62:124–128PubMedCrossRefGoogle Scholar
  17. Leedjaerv A, Ivask A, Virta M (2008) Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. J Bacteriol 190:2680–2689CrossRefGoogle Scholar
  18. Legatzki A, Franke S, Lucke S, Hoffmann T, Anton A, Neumann D, Nies D (2003a) First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans. Biodegradation 14:153–168PubMedCrossRefGoogle Scholar
  19. Legatzki A, Grass G, Anton A, Rensing C, Nies D (2003b) Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 185:4354–4361PubMedCentralPubMedCrossRefGoogle Scholar
  20. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384PubMedCrossRefGoogle Scholar
  21. Moraleda-Munoz A, Perez J, Luis Extremera A, Munoz-Dorado J (2010) Differential regulation of six heavy metal efflux systems in the response of Myxococcus xanthus to copper. Appl Environ Microbiol 76:6069–6076PubMedCentralPubMedCrossRefGoogle Scholar
  22. Ng HJ, Lopez-Perez M, Webb HK, Gomez D, Sawabe T, Ryan J, Vyssotski M, Bizet C, Malherbe F, Mikhailov VV, Crawford RJ, Ivanova EP (2014) Marinobacter salarius sp. nov. and Marinobacter similis sp. nov., isolated from sea water. PLoS One 9:e106514. doi: 10.1371/journal.pone.0106514 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Nies D (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation–proton antiporter in Escherichia coli. J Bacteriol 177:2707–2712PubMedCentralPubMedGoogle Scholar
  24. Nies D (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339PubMedCrossRefGoogle Scholar
  25. Nies D, Nies A, Chu L, Silver S (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86:7351–7355PubMedCentralPubMedCrossRefGoogle Scholar
  26. Pletzer D, Weingart H (2014) Characterization and regulation of the resistance-nodulation-cell division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora. BMC Microbiol 14:185PubMedCentralPubMedCrossRefGoogle Scholar
  27. Rensing C, Pribyl T, Nies D (1997) New functions for the three subunits of the CzcCBA cation-proton antiporter. J Bacteriol 179:6871–6879PubMedCentralPubMedGoogle Scholar
  28. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  29. Schenk A, Berger M, Keith LM, Bender CL, Muskhelishvili G, Ullrich MS (2006) The algT gene of Pseudomonas syringae pv. glycinea and new insights into the transcriptional organization of the algT-muc gene cluster. J Bacteriol 188:8013–8021PubMedCentralPubMedCrossRefGoogle Scholar
  30. Scherer J, Nies DH (2009) CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 73:601–621PubMedCrossRefGoogle Scholar
  31. Singer E, Webb EA, Nelson WC, Heidelberg JF, Ivanova N, Pati A, Edwards KJ (2011) Genomic Potential of Marinobacter aquaeolei, a biogeochemical “opportunitroph”. Appl Environ Microbiol 77:2763–2771PubMedCentralPubMedCrossRefGoogle Scholar
  32. Song L, Ren L, Li X, Yu D, Yu Y, Wang X, Liu G (2013) Complete genome sequence of Marinobacter sp. BSs20148. Genome Announc 1:e00236-13. doi: 10.1128/genomeA.00236-13 PubMedCentralPubMedGoogle Scholar
  33. Sonnenschein EC, Gaerdes A, Seebah S, Torres-Monroy I, Grossart H, Ullrich MS (2011) Development of a genetic system for Marinobacter adhaerens HP15 involved in marine aggregate formation by interacting with diatom cells. J Microbiol Methods 87:176–183PubMedCrossRefGoogle Scholar
  34. Sonnenschein EC, Syit DA, Grossart H, Ullrich MS (2012) Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogii. Appl Environ Microbiol 78:6900–6907PubMedCentralPubMedCrossRefGoogle Scholar
  35. Stahler F, Odenbreit S, Haas R, Wilrich J, Van Vliet A, Kusters J, Kist M, Bereswill S (2006) The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. Infect Immun 74:3845–3852PubMedCentralPubMedCrossRefGoogle Scholar
  36. Thoma S, Schobert M (2009) An improved Escherichia coli donor strain for diparental mating. FEMS Microbiol Lett 294:127–132PubMedCrossRefGoogle Scholar
  37. Tseng T, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH Jr (1999) The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125PubMedGoogle Scholar
  38. van der Lelie D, Schwuchow T, Schwidetzky U, Wuertz S, Baeyens W, Mergeay M, Nies D (1997) Two-component regulatory system involved in transcriptional control of heavy-metal homoeostasis in Alcaligenes eutrophus. Mol Microbiol 23:493–503PubMedCrossRefGoogle Scholar
  39. Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289PubMedCrossRefGoogle Scholar
  40. Vaneechoutte M, Kampfer P, De Baere T, Falsen E, Verschraegen G et al (2004) Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol 54:317–327PubMedCrossRefGoogle Scholar
  41. Wang H, Li H, Shao Z, Liao S, Johnstone L, Rensing C, Wang G (2012) Genome Sequence of deep-sea manganese-oxidizing bacterium Marinobacter manganoxydans MnI7-9. J Bacteriol 194:899–900PubMedCentralPubMedCrossRefGoogle Scholar
  42. Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764PubMedCrossRefGoogle Scholar
  43. Zhang D, Li H, Xin Y, Chi Z, Zhou P, Yu Y (2008) Marinobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58:1463–1466PubMedCrossRefGoogle Scholar
  44. Zumaquero A, Macho AP, Rufian JS, Beuzon CR (2010) Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant. J Bacteriol 192:4474–4488PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Antje Stahl
    • 1
  • Daniel Pletzer
    • 1
  • Amna Mehmood
    • 1
  • Matthias S. Ullrich
    • 1
  1. 1.Department of Life Sciences and ChemistryJacobs University BremenBremenGermany

Personalised recommendations