Antonie van Leeuwenhoek

, Volume 108, Issue 3, pp 571–577 | Cite as

Pseudonocardia nematodicida sp. nov., isolated from mangrove sediment in Hainan, China

  • Min Liu
  • Shan-shan Xing
  • Wei-dao Yuan
  • Hua Wei
  • Qian-guang Sun
  • Xiang-zhi Lin
  • Hui-qin HuangEmail author
  • Shi-xiang BaoEmail author
Original Paper


Two aerobic, Gram-stain positive actinobacterial strains with nematicidal activity, designated HA11164T and HA12591, were isolated from mangrove sediments in Hainan, China. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strains HA11164T and HA12591 belong to the genus Pseudonocardia and are closely related to Pseudonocardia carboxydivorans (with the similarities of 98.30 and 98.24 %, respectively), Pseudonocardia alni (98.23 and 98.16 %, respectively) and Pseudonocardia antimicrobica (98.10 and 98.03 %, respectively). The major polar lipids of the strain HA11164T, as a representative strain of the two strains, were found to consist of phosphatidylmethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, five unidentified glycolipids and four unidentified polar lipids. The predominant menaquinone of strain HA11164T was identified as MK-8 (H4), and the major fatty acids were identified as iso-C16:0, C17:1 ω10, C16:0 and C16:1 ω9. The G+C content of strain HA11164T was determined to be 74.9 mol%. The DNA–DNA relatedness values between strains HA11164T and P. alni, Pseudonocardia tropica, Pseudonocardia antarctica, P. carboxydivorans and Pseudonocardia parietis were 58.3, 56.2, 50.0, 57.1 and 46.0 %, respectively. Based on the results of this polyphasic study, strains HA11164T and HA12591 are considered to represent a novel species of the genus Pseudonocardia, for which the name Pseudonocardia nematodicida sp. nov. is proposed. The type strain is HA11164T (=CGMCC 4.7118T = DSM 45940T).


Pseudonocardia nematodicida sp. nov. 16S rRNA gene Polyphasic taxonomy 



This research was supported by National Natural Science Foundation of China (31400010, 31170062), National Basic Research Program of China (973 Program) (2013CB127500), National Project of Marine economy innovation development area demonstration (12PYY001SF08–ZGRKY–1), Hainan major technology project (ZDZX2013023-1), Special Fund for Agro-scientific Research in the Public Interest (201403075) and National Non-profit Institute Research Grant of CATAS-ITBB from Chinese Government (1630052012002, 1630052013004).

Supplementary material

10482_2015_512_MOESM1_ESM.doc (512 kb)
Supplementary material 1 (DOC 511 kb)


  1. Ara I, Tsetseg B, Daram D, Suto M, Ando K (2011) Pseudonocardia mongoliensis sp. nov. and Pseudonocardia khuvsgulensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:747–756PubMedCrossRefGoogle Scholar
  2. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M (2000) DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102PubMedCrossRefGoogle Scholar
  3. Collins M (1994) Isoprenoid quinones. In: Goodfellow M, O’Donnell A (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 265–309Google Scholar
  4. Collins M, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470CrossRefGoogle Scholar
  5. Duangmal K, Thamchaipenet A, Matsumoto A, Takahashi Y (2009) Pseudonocardia acaciae sp. nov., isolated from roots of Acacia auriculiformis A. Cunn. ex Benth. Int J Syst Evol Microbiol 59:1487–1491PubMedCrossRefGoogle Scholar
  6. Evtushenko L, Akimov V, Dobritsa SV, Taptykova SD (1989) A new species of actinomycete, Amycolata alni. Int J Syst Evol Microbiol 39:72–77Google Scholar
  7. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol 39:224–229Google Scholar
  8. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  10. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  11. Gause G, Preobrazhenskaya T, Sveshnikova G, Terekhova L, Maksimova T (1983) A guide for determination of actinomycetes. Nauka (in Russian), MoscowGoogle Scholar
  12. Henssen A (1957) Beiträge zur Morphologie und Systematik der thermophilen Actinomyceten. Arch Mikrobiol 26:373–414PubMedCrossRefGoogle Scholar
  13. Henssen A, Happach-Kasan C, Renner B, Vobis G (1983) Pseudonocardia compacta sp. nov. Int J Syst Evol Microbiol 33:829–836Google Scholar
  14. Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33:265–278CrossRefGoogle Scholar
  15. Kaewkla O, Franco CM (2011) Pseudonocardia eucalypti sp. nov., an endophytic actinobacterium with a unique knobby spore surface, isolated from roots of a native Australian eucalyptus tree. Int J Syst Evol Microbiol 61:742–746PubMedCrossRefGoogle Scholar
  16. Kim P, Lee J-C, Park D-J, Shin K-S, Kim J-Y, Kim C-J (2012) Gracilibacillus bigeumensis sp. nov., a moderately halophilic bacterium from solar saltern soil. Int J Syst Evol Microbiol 62:1857–1863PubMedCrossRefGoogle Scholar
  17. Kuykendall L, Roy M, O’neill J, Devine T (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 38:358–361Google Scholar
  18. Lee SD, Kim ES, Min K-L, Lee WY, Kang S-O, Hah YC (2001) Pseudonocardia kongjuensis sp. nov., isolated from a gold mine cave. Int J Syst Evol Microbiol 51:1505–1510PubMedGoogle Scholar
  19. Lee SD, Kim ES, Kang S-O, Hah YC (2002) Pseudonocardia spinosispora sp. nov., isolated from Korean soil. Int J Syst Evol Microbiol 52:1603–1608PubMedCrossRefGoogle Scholar
  20. Liu Z, Wu J, Liu Z, Liu S (2006) Pseudonocardia ammonioxydans sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 56:555–558PubMedCrossRefGoogle Scholar
  21. Mahendra S, Alvarez-Cohen L (2005) Pseudonocardia dioxanivorans sp. nov., a novel actinomycete that grows on 1,4-dioxane. Int J Syst Evol Microbiol 55:593–598PubMedCrossRefGoogle Scholar
  22. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 39:159–167Google Scholar
  23. Minnikin D, Collins M, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95CrossRefGoogle Scholar
  24. Minnikin D, O’donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  25. Park SW, Park ST, Lee JE, Kim YM (2008) Pseudonocardia carboxydivorans sp. nov., a carbon monoxide-oxidizing actinomycete, and an emended description of the genus Pseudonocardia. Int J Syst Evol Microbiol 58:2475–2478PubMedCrossRefGoogle Scholar
  26. Prabahar V, Dube S, Reddy G, Shivaji S (2004) Pseudonocardia antarctica sp. nov. an actinomycetes from McMurdo Dry Valleys, Antarctica. Syst Appl Microbiol 27:66–71PubMedCrossRefGoogle Scholar
  27. Qin S, Su Y-Y, Zhang Y-Q, Wang H-B, Jiang C-L, Xu L-H, Li W-J (2008) Pseudonocardia ailaonensis sp. nov., isolated from soil in China. Int J Syst Evol Microbiol 58:2086–2089PubMedCrossRefGoogle Scholar
  28. Qin S, Zhu W-Y, Jiang J-H, Klenk H-P, Li J, Zhao G-Z, Xu L-H, Li W-J (2010) Pseudonocardia tropica sp. nov., an endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 60:2524–2528PubMedCrossRefGoogle Scholar
  29. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  30. Schäfer J, Busse H-J, Kämpfer P (2009) Pseudonocardia parietis sp. nov., from the indoor environment. Int J Syst Evol Microbiol 59:2449–2452PubMedCrossRefGoogle Scholar
  31. Shirling E, Gottlieb D (1966) Method for characterization of Streptomyces species. Int J Syst Evol Microbiol 16:313–340Google Scholar
  32. Smibert R, Krieg N (1994) Phenotypic characterization. In: Gerhardt PMR, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  33. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P, Maiden MC, Nesme X, Rosselló-Mora R, Swings J, Trüper HG (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047PubMedCrossRefGoogle Scholar
  34. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  35. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCentralPubMedCrossRefGoogle Scholar
  36. Tian X, Long L, Li S, Zhang J, Xu Y, He J, Li J, Wang F, Li W, Zhang C (2013) Pseudonocardia antitumoralis sp. nov., a deoxynyboquinone-producing actinomycete isolated from a deep-sea sediment. Int J Syst Evol Microbiol 63:893–899PubMedCrossRefGoogle Scholar
  37. Wayne L, Brenner D, Colwell R, Grimont P, Kandler O, Krichevsky M, Moore L, Moore W, Murray R, Stackebrandt E (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464Google Scholar
  38. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedCentralPubMedGoogle Scholar
  39. Zeng Q, Huang H, Zhu J, Fang Z, Sun Q, Bao S (2013) A new nematicidal compound produced by Streptomyces albogriseolus HA10002. Antonie Van Leeuwenhoek 103:1107–1111PubMedCentralPubMedCrossRefGoogle Scholar
  40. Zhao G-Z, Li J, Huang H-Y, Zhu W-Y, Zhao L-X, Tang S-K, Xu L-H, Li W-J (2011) Pseudonocardia artemisiae sp. nov., isolated from surface-sterilized Artemisia annua L. Int J Syst Evol Microbiol 61:1061–1065PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Min Liu
    • 1
  • Shan-shan Xing
    • 1
  • Wei-dao Yuan
    • 1
  • Hua Wei
    • 1
  • Qian-guang Sun
    • 1
  • Xiang-zhi Lin
    • 2
  • Hui-qin Huang
    • 1
    Email author
  • Shi-xiang Bao
    • 1
    Email author
  1. 1.Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Institute of Tropical Biosciences and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouPeople’s Republic of China
  2. 2.Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyState Oceanic AdministrationXiamenPeople’s Republic of China

Personalised recommendations