Antonie van Leeuwenhoek

, Volume 108, Issue 3, pp 563–569 | Cite as

Catellatosporatagetis sp. nov., isolated from the root of a marigold (Tagetes erecta L.)

  • Ying Zhou
  • Chongxi Liu
  • Yuejing Zhang
  • Junwei Zhao
  • Chuang Li
  • Hairong He
  • Jiansong Li
  • Xiangjing Wang
  • Wensheng Xiang
Original Paper

Abstract

A Gram-stain positive, non-motile, mesophilic actinomycete, designated strain NEAU-YJC4T was isolated from the root of a marigold (Tagetes erecta L.) collected in Heilongjiang Province, northeast China, and characterized using a polyphasic approach. Morphological and chemotaxonomic properties of strain NEAU-YJC4T were consistent with the description of the genus Catellatospora. 16S rRNA gene sequence similarity studies showed that strain NEAU-YJC4T belongs to the genus Catellatospora, being most closely related to Catellatospora bangladeshensis JCM 12949T (98.7 %). Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that strain NEAU-YJC4T formed a monophyletic clade with the closest relative. A combination of DNA–DNA hybridization results and some phenotypic characteristics indicated that strain NEAU-YJC4T can be distinguished from C. bangladeshensis JCM 12949T. Therefore, it is proposed that strain NEAU-YJC4T represents a novel species of the genus Catellatospora, for which the name Catellatospora tagetis sp. nov. is proposed. The type strain is NEAU-YJC4T (=CGMCC 4.7176T = JCM 30053T).

Keywords

Catellatospora tagetis sp. nov. Polyphasic taxonomy 16S rRNA gene 

Notes

Acknowledgments

This work was supported in part by grants from the National Outstanding Youth Foundation (No. 31225024), the National Natural Science Foundation of China (Nos. 31471832, 31171913 and 31372006), the National Key Technology R&D Program (No. 2012BAD19B06), Chang Jiang Scholar Candidates Program for Provincial Universities in Heilongjiang (CSCP), the China Postdoctoral Science Foundation (2014M561319) and the Heilongjiang Postdoctoral Fund (LBH-Z14027). And we are grateful to Professor Bernhard Schink for helpful advice on the specific epithet.

Supplementary material

10482_2015_511_MOESM1_ESM.doc (4.6 mb)
Supplementary material 1 (DOC 4739 kb)

References

  1. Alexander SA, Waldenmaier CM (2002) Suppression of Pratylenchus penetrans populations in potato and tomato using African marigolds. J Nematol 34:130–134PubMedCentralPubMedGoogle Scholar
  2. Ara I, Kudo T (2006) Three novel species of the genus Catellatospora, Catellatospora chokoriensis sp. nov., Catellatospora coxensis sp. nov. and Catellatospora bangladeshensis sp. nov., and transfer of Catellatospora citrea subsp. methionotrophica Asano and Kawamoto 1988 to Catellatospora methionotrophica sp. nov., comb. nov. Int J Syst Evol Microbiol 56:393–400PubMedCrossRefGoogle Scholar
  3. Asano K, Kawamoto I (1986) Catellatospora, a new genus of the Actinomycetales. Int J Syst Bacteriol 36:512–517CrossRefGoogle Scholar
  4. Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–284Google Scholar
  5. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  6. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789CrossRefGoogle Scholar
  8. Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315PubMedCrossRefGoogle Scholar
  9. Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63CrossRefGoogle Scholar
  10. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  11. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192PubMedCrossRefGoogle Scholar
  12. Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–146PubMedCentralPubMedGoogle Scholar
  13. Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors. US government printing office, WashingtonGoogle Scholar
  14. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  15. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  16. Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291Google Scholar
  17. Lee YK, Kim HW, Liu CL, Lee HK (2003) A simple method for DNA extraction from marine bacteria that produce extracellular materials. J Microbiol Methods 52:245–250PubMedCrossRefGoogle Scholar
  18. Loqman S, Barka EA, Clément C, Ouhdouch Y (2009) Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World J Microbiol Biotechnol 25:81–91CrossRefGoogle Scholar
  19. Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206CrossRefGoogle Scholar
  20. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Seviour RJ (2000) A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182Google Scholar
  21. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233CrossRefGoogle Scholar
  22. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  24. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  25. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654Google Scholar
  26. Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231PubMedCentralPubMedGoogle Scholar
  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  28. Uchida K, Kudo T, Suzuki K, Nakase T (1999) A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45:49–56PubMedCrossRefGoogle Scholar
  29. Wang XJ, Zhao JW, Liu CX, Wang JD, Shen Y, Jia FY, Wang L, Zhang J, Yu C, Xiang WS (2013) Nonomuraea solani sp. nov., a novel actinomycete isolated from eggplant root (Solanum melongena L.). Int J Syst Evol Microbiol 63:2418–2423PubMedCentralPubMedCrossRefGoogle Scholar
  30. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  31. Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 16:176–178 [English translation of Microbiology (Beijing)] Google Scholar
  32. Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169PubMedCrossRefGoogle Scholar
  33. Xie QY, Lin HP, Li L, Brown R, Goodfellow M, Deng ZX, Hong K (2012) Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie Van Leeuwenhoek 102:1–7PubMedCrossRefGoogle Scholar
  34. Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ying Zhou
    • 1
    • 2
  • Chongxi Liu
    • 2
  • Yuejing Zhang
    • 2
  • Junwei Zhao
    • 1
  • Chuang Li
    • 2
  • Hairong He
    • 1
  • Jiansong Li
    • 2
  • Xiangjing Wang
    • 2
  • Wensheng Xiang
    • 1
    • 2
  1. 1.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education CommitteeNortheast Agricultural UniversityHarbinPeople’s Republic of China

Personalised recommendations