Antonie van Leeuwenhoek

, Volume 108, Issue 3, pp 545–552 | Cite as

Flavobacterium notoginsengisoli sp. nov., isolated from the rhizosphere of Panax notoginseng

  • Meng-Yue Zhang
  • Huan Xu
  • Tian-Yuan Zhang
  • Jun Xie
  • Juan Cheng
  • Salam Nimaichand
  • Shan-Hui Li
  • Wen-Jun Li
  • Yi-Xuan Zhang
Original Paper

Abstract

Two novel bacterial strains, designated SYP-B540T and SYP-B556, were isolated from rhizospheric soil of Panax notoginseng located at Yunnan Province, China. Both strains were Gram-staining negative, aerobic, non-motile, elongated rod shaped and yellow coloured. They grew optimally at 28 °C and pH 7.0. Analysis of 16S rRNA gene sequences showed that the two strains shared 99.8 % sequence similarity to each other, but lower than 97.6 % to the other known species of the genus Flavobacterium. The predominant respiratory quinone for the two strains was MK-6, and the major fatty acids were iso-C15:0 and summed Feature 3 (comprising 16:1 ω7c and/or 16:1 ω6c). The polar lipids consisted of phosphatidylethanolamine, two unidentified polar lipids and three unidentified amino-phospholipids. The DNA G+C contents of strains SYP-B540T and SYP-B556 were 33.3 and 32.7 mol%, respectively. In addition, the DNA–DNA hybridization values of strains SYP-B540T and SYP-B556 to their closest phylogenetic neighbors were significantly lower than 70 %. On the basis of the polyphasic taxonomy studies, strains SYP-B540T and SYP-B556 represent a novel species of the genus Flavobacterium, for which the name Flavobacterium notoginsengisoli sp. nov. is proposed. The type strain is SYP-B540T (=KCTC 32505T = NBRC 110012T = BCRC 80724T).

Keywords

Flavobacterium notoginsengisoli sp. nov. Rhizosphere Panax notoginseng Polyphasic taxonomy 

Notes

Acknowledgments

The authors are grateful to Prof. Dr. Takuji Kudo (JCM) and Miss Sang Mi Lee (KCTC) for their kind providing reference type strain. This research was supported by Key Project of Yunnan Provincial Natural Science Foundation (2013FC008). W-J Li was also supported by Project Supported by Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme (2014).

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1923) Genus II. Flavobacterium gen. nov. Bergey’s Manual of Determinative Bacteriology. Williams & Wilkins, Baltimore, pp 97–117Google Scholar
  2. Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P (1996) Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148CrossRefGoogle Scholar
  3. Choi RCY, Zhu JTT, Leung KW, Chu GKY, Xie HQ, Chen VP, Zheng KYZ, Lau DTW, Dong TTX, Chow PCY, Han YF, Wang ZT, Tsim KWK (2010) A flavonol glycoside, isolated from roots of Panax notoginseng, reduces amyloid-β-induced neurotoxicity in cultured neurons: signaling transduction and drug development for Alzheimer’s disease. J Alzheimers Dis 19:795–811PubMedGoogle Scholar
  4. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  7. Frankland GC, Frankland PF (1889) Ueber einige typische Microorganismen im Wasser und im Boden. Z Hyg Infekt 6:374–400Google Scholar
  8. Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov., an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715PubMedCrossRefGoogle Scholar
  9. Hu HY, Lim BR, Goto N, Fujie K (2001) Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47:17–24PubMedCrossRefGoogle Scholar
  10. Kelly KL (1964) Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. US Government Printing Office, Washington, DCGoogle Scholar
  11. Khianngam S, Akaracharanya A, Lee JS, Lee KC, Kim KW, Tanasupawat S (2014) Flavobacterium arsenitoxidans sp. nov., an arsenite-oxidizing bacterium from Thai soil. Antonie Van Leeuwenhoek 106:1239–1246PubMedCrossRefGoogle Scholar
  12. Kim JH, Kim KY, Cha CJ (2009) Flavobacterium chungangense sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 59:1754–1758PubMedCrossRefGoogle Scholar
  13. Kim JJ, Kanaya E, Weon HY, Koga Y, Takano K, Dunfield PF, Kwon SW, Kanaya S (2012a) Flavobacterium compostarboris sp. nov., isolated from leaf-and-branch compost, and emended descriptions of Flavobacterium hercynium, Flavobacterium resistens and Flavobacterium johnsoniae. Int J Syst Evol Microbiol 62:2018–2024PubMedCrossRefGoogle Scholar
  14. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012b) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  15. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  16. Lewin RA (1969) A Classification of Flexibacteria. J Gen Microbiol 58:189–206PubMedCrossRefGoogle Scholar
  17. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428PubMedCrossRefGoogle Scholar
  18. Liu Y, Jin JH, Zhou YG, Liu HC, Liu ZP (2010) Flavobacterium caeni sp. nov., isolated from a sequencing batch reactor for the treatment of malachite green effluents. Int J Syst Evol Microbiol 60:417–421PubMedCrossRefGoogle Scholar
  19. Liu M, Li YH, Liu Y, Zhu JN, Liu QF, Liu Y, Gu JG, Zhang XX, Li CL (2011) Flavobacterium phragmitis sp. nov., an endophyte of reed (Phragmites australis). Int J Syst Evol Microbiol 61:2717–2721PubMedCrossRefGoogle Scholar
  20. Liu JJ, Wang YT, Qiu L, Yu YY, Wang CM (2014) Saponins of Panax notoginseng: chemistry, cellular targets and therapeutic opportunities in cardiovascular diseases. Expert Opin Investig Drugs 23:523–539PubMedCrossRefGoogle Scholar
  21. Loch TP, Faisal M (2014) Flavobacterium spartansii sp. nov., a pathogen of fishes, and emended descriptions of Flavobacterium aquidurense and Flavobacterium araucananum. Int J Syst Evol Microbiol 64:406–412PubMedCrossRefGoogle Scholar
  22. McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B, Rhodes RG, Goltsman E, Wang W, Xu J, Hunnicutt DW, Staroscik AM, Hoover TR, Cheng YQ, Stein JL (2009) Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 75:6864–6875PubMedCentralPubMedCrossRefGoogle Scholar
  23. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  24. Minnikin D, O’donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  25. Miyashita M, Fujimura S, Nakagawa Y, Nishizawa M, Tomizuka N, Nakagawa T, Nakagawa J (2010) Flavobacterium algicola sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 60:344–348PubMedCrossRefGoogle Scholar
  26. Parte AC (2014) LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:D613–D616PubMedCentralPubMedCrossRefGoogle Scholar
  27. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  29. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCentralPubMedCrossRefGoogle Scholar
  30. Uzayisenga R, Ayeka PA, Wang Y (2014) Anti-diabetic potential of Panax Notoginseng saponins (PNS): a Review. Phytother Res 28:510–516PubMedCrossRefGoogle Scholar
  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  32. Xin YH, Liang ZH, Zhang DC, Liu HC, Zhang JL, Yu Y, Xu MS, Zhou PJ, Zhou YG (2009) Flavobacterium tiangeerense sp. nov., a cold-living bacterium isolated from a glacier. Int J Syst Evol Microbiol 59:2773–2777PubMedCrossRefGoogle Scholar
  33. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu H, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family Oxalobacteraceae isolated from China. Int J Syst Evol Microbiol 55:1149–1153PubMedCrossRefGoogle Scholar
  34. Yang YY, Lee J, Rhee MH, Yu T, Baek KS, Sung NY, Kim Y, Yoon K, Kim JH, Kwak YS, Hong S, Kim JH, Cho JY (2015) Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions. J Ginseng Res 39:61–68PubMedCentralPubMedCrossRefGoogle Scholar
  35. Zhou NN, Tang Y, Keep RF, Ma XX, Xiang JM (2014) Antioxidative effects of Panax notoginseng saponins in brain cells. Phytomedicine 21:1189–1195PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Meng-Yue Zhang
    • 1
  • Huan Xu
    • 1
  • Tian-Yuan Zhang
    • 1
  • Jun Xie
    • 1
  • Juan Cheng
    • 1
  • Salam Nimaichand
    • 2
  • Shan-Hui Li
    • 3
  • Wen-Jun Li
    • 2
    • 3
  • Yi-Xuan Zhang
    • 1
  1. 1.School of Life Science and BiopharmaceuticsShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China
  2. 2.State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, College of Ecology and EvolutionSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  3. 3.Yunnan Institute of MicrobiologyYunnan UniversityKunmingPeople’s Republic of China

Personalised recommendations