Antonie van Leeuwenhoek

, Volume 108, Issue 2, pp 453–459 | Cite as

Actinoallomurusbryophytorum sp. nov., an endophytic actinomycete isolated from moss (Bryophyta)

  • Chuang Li
  • Haiyan Wang
  • Pinjiao Jin
  • Weijia Zheng
  • Liyang Chu
  • Chongxi Liu
  • Jiansong Li
  • Wensheng Xiang
  • Xiangjing Wang
Original Paper

Abstract

A novel endophytic actinomycete, strain NEAU-TX1-15T, was isolated from moss, collected from Wuchang, Heilongjiang province, north China. A polyphasic taxonomic study was carried out to establish the status of strain NEAU-TX1-15T. Morphological and chemotaxonomic properties of strain NEAU-TX1-15T are consistent with the description of the genus Actinoallomurus. Strain NEAU-TX1-15T was observed to form short spiral or looped spore chains on aerial hyphae. The cell wall peptidoglycan was found to contain lysine and meso-diaminopimelic acid. The major menaquinones were identified as MK-9(H6) and MK-9(H8). The only phospholipid identified was phosphatidylglycerol. The major fatty acid was identified as iso-C16:0. Analysis of the 16S rRNA gene sequence supports the assignment of the novel strain to the genus Actinoallomurus, as it exhibits 99.2 % gene sequence similarity to that of Actinoallomurus yoronensis NBRC 103686T. However, the low level of DNA–DNA relatedness allowed the strain to be differentiated from its close relative. Moreover, strain NEAU-TX1-15T could also be differentiated from A. yoronensis NBRC 103686T and other Actinoallomurus species showing high 16S rRNA gene sequence similarity (>98.0 %) by cultural and physiological characteristics. Therefore, the combination of phenotypic and chemotaxonomic data, and the DNA–DNA hybridization value, indicated that strain NEAU-TX1-15T represents a novel species of the genus Actinoallomurus for which the name Actinoallomurus bryophytorum sp. nov. is proposed. The type strain is NEAU-TX1-15T (=CGMCC 4.7200T = JCM 30340T).

Keywords

Actinoallomurus bryophytorum sp. nov. Polyphasic taxonomy 16S rRNA gene 

Notes

Acknowledgments

This work was supported in part by grants from the National Outstanding Youth Foundation (No. 31225024), the National Natural Science Foundation of China (No. 31471832, 31171913 and 31372006), the National Key Technology R&D Program (No. 2012BAD19B06), Chang Jiang Scholar Candidates Program for Provincial Universities in Heilongjiang (CSCP), the China Postdoctoral Science Foundation (2014M561319) and the Heilongjiang Postdoctoral Fund (LBH-Z14027).

Supplementary material

10482_2015_498_MOESM1_ESM.doc (774 kb)
Supplementary material 1 (DOC 774 kb)

References

  1. Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–284Google Scholar
  2. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  3. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  4. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  5. Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315PubMedCrossRefGoogle Scholar
  6. Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63CrossRefGoogle Scholar
  7. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  8. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192PubMedCrossRefGoogle Scholar
  9. Indananda C, Thamchaipenet A, Matsumoto A, Inahashi Y, Duangmal K, Takahashi Y (2011) Actinoallomurus oryzae sp. nov., an endophytic actinomycete isolated from roots of a Thai jasmine rice plant. Int J Syst Evol Microbiol 61:737–741PubMedCrossRefGoogle Scholar
  10. Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors published in US. US Government Printing Office, Washington, DCGoogle Scholar
  11. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036PubMedCrossRefGoogle Scholar
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  13. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  14. Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291Google Scholar
  15. Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206CrossRefGoogle Scholar
  16. Matsumoto A, Fukuda A, Inahashi Y, Ōmura S, Takahashi Y (2012) Actinoallomurus radicium sp. nov., isolated from the roots of two plant species. Int J Syst Evol Microbiol 62:295–298PubMedCrossRefGoogle Scholar
  17. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Se-viour RJ (2000) A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182PubMedCrossRefGoogle Scholar
  18. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233CrossRefGoogle Scholar
  19. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  20. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  21. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  22. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654Google Scholar
  23. Tamura T, Ishida Y, Nozawa Y, Otogturo M, Suzuki K (2009) Transfer of Actinomadura spadix Nonomura and Ohara 1971 to Actinoallomurus spadix gen. nov., comb. nov., and description of Actinoallomurus amamiensis sp. nov., Actinoallomurus caesius sp. nov., Actinoallomurus coprocola sp. nov., Actinoallomurus fulvus sp. nov., Actinoallomurus iriomotensis sp. nov., Actinoallomurus luridus sp. nov., Actinoallomurus purpureus sp. nov. and Actinoallomurus yoronensis sp. nov. Int J Syst Evol Microbiol 59:1867–1874PubMedCrossRefGoogle Scholar
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  25. Thamchaipenet A, Indananda C, Bunyoo C, Duangmal K, Matsumoto A, Takahashi Y (2010) Actinoallomurus acaciae sp. nov, an endophytic actinomycete isolated from Acacia auriculiformis A. Cunn. ex Benth. Int J Syst Evol Microbiol 60:554–559PubMedCrossRefGoogle Scholar
  26. Uchida K, Aida K (1984) An improved method for the glycolate test for simple identification of acyl type of bacterial cell walls. J Gen Appl Microbiol 30:131–134CrossRefGoogle Scholar
  27. Wang XJ, Zhao JW, Liu CX, Wang JD, Shen Y, Jia FY, Wang L, Zhang J, Yu C, Xiang WS (2013) Nonomuraea solani sp. nov., a novel actinomycete isolated from eggplant root (Solanum melongena L.). Int J Syst Evol Microbiol 63:2418–2423PubMedCentralPubMedCrossRefGoogle Scholar
  28. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  29. Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiol [Engl Transl Microbiol (Beijing)] 16:176–178Google Scholar
  30. Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169PubMedCrossRefGoogle Scholar
  31. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153PubMedCrossRefGoogle Scholar
  32. Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Chuang Li
    • 1
  • Haiyan Wang
    • 2
  • Pinjiao Jin
    • 1
  • Weijia Zheng
    • 1
  • Liyang Chu
    • 1
  • Chongxi Liu
    • 1
  • Jiansong Li
    • 1
  • Wensheng Xiang
    • 1
    • 2
  • Xiangjing Wang
    • 1
  1. 1.Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education CommitteeNortheast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations