Antonie van Leeuwenhoek

, Volume 108, Issue 2, pp 321–328 | Cite as

Lampropedia puyangensis sp. nov., isolated from symptomatic bark of Populus × euramericana canker and emended description of Lampropedia hyalina (Ehrenberg 1832) Lee et al. 2004

  • Yong Li
  • Tao Wang
  • Chun-gen Piao
  • Lai-fa Wang
  • Guo-zhong Tian
  • Tian-hui Zhu
  • Min-wei Guo
Original Paper

Abstract

A Gram-stain negative, Neisser-stain negative, aerobic, non-motile, non-spore-forming, slimy, glossy bacterial strain with single or clustered coccoid cells and white colony colour, designated as 2-binT, was isolated from cankered bark tissue of Populus × euramericana. The strain was found to grow at 15–40 °C and pH 5–10, with an optimum of 30 °C and pH 8.0. The strain was found to be negative with respect to catalase and positive for oxidase activity, nitrate reduction and Voges–Proskauer reaction. Analysis of 16S rRNA gene sequence data indicated that the isolate belongs to the genus Lampropedia, having sequence similarity of 96.24 % with Lampropedia hyalina ATCC11041T. DNA–DNA relatedness of strain 2-binT with L. hyalina JCM 21380T was 26.7 ± 4.6 %. The DNA G+C content of strain 2-binT was determined to be 57 % and the major cellular fatty acids were identified as C16:0, C16:1ω7c/C16:1ω6c and C18:1ω7c. The polar lipid profile of strain 2-binT was found to contain diphosphatidylglycerol, a glycolipid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, a phospholipid, phosphatidylmonomethylethanolamine and three unidentified lipids (L1, L2, L3). Based on molecular data and physiological and biochemical characteristics, strain 2-binT is considered to represent a novel species in the genus Lampropedia, for which the name Lampropedia puyangensis sp. nov. is proposed. The type strain is 2-binT (= CFCC 10925T = KCTC 32235T).

Keywords

Lampropedia puyangensis Polyphasic taxonomy DNA–DNA hybridization Chemotaxonomic analysis 

Notes

Acknowledgments

The research was supported by the Special Fund of the Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes (CAFRIFEEP201102-4) and National Infrastructure of Microbial Resources (NIMR-2013-7). We also thank Professor Everett M. Hansen for his help with the written English language.

Supplementary material

10482_2015_483_MOESM1_ESM.pptx (81 kb)
Supplementary material 1 (PPTX 80 kb)

References

  1. Austin JW, Murray RG (1990) Isolation and in vitro assembly of the components of the outer S layer of Lampropedia hyalina. J Bacteriol 172:3681–3689PubMedCentralPubMedGoogle Scholar
  2. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  3. Del Sal G, Manfioletti G, Schneider C (1989) The CTAB-DNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques 7:514–520PubMedGoogle Scholar
  4. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  5. Forbes L (1981) Rapid flagella stain. J Clin Microbiol 13:807–809PubMedCentralPubMedGoogle Scholar
  6. Jenkins D, Richard MG, Daigger GT (1986) Manual on the causes and control of activated sludge bulking and foaming. Water Research CommissionGoogle Scholar
  7. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  8. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Chichester, Wiley, pp 115–175Google Scholar
  9. Lee N, Cellamare CM, Bastianutti C, Rosselló-Mora R, Kämpfer P, Ludwig W, Schleifer K, Stante L (2004) Emended description of the species Lampropedia hyalina. Int J Syst Evol Microbiol 54:1709–1715PubMedCrossRefGoogle Scholar
  10. Li Y, Piao CG, Ma YC, He W et al (2013) Acinetobacter puyangensis sp. nov., isolated from the healthy and diseased part of Populus × euramericana canker bark. Int J Syst Evol Microbiol 63:2963–2969PubMedCrossRefGoogle Scholar
  11. Li Y, He W, Ren FJ, Guo LM et al (2014a) A canker disease of Populus × euramericana in China, caused by Lonsdalea quercina subsp. populi. Plant Dis 98:368–378CrossRefGoogle Scholar
  12. Li Y, He W, Wang T, Piao CG et al (2014b) Acinetobacter qingfengensis sp. nov., isolated from Populus × euramericana canker bark. Int J Syst Evol Microbiol 64:3417–3421CrossRefGoogle Scholar
  13. Li Y, Fang W, Xue H, Liang WX, Wang LF, Tian Z.G et al (2014c) Brenneria populi sp. nov., isolated from symptomatic bark of Populus × euramericana canker. Int J Syst Evol Microbiol Nov 10. doi:10.1099/ijs.0.066068-0
  14. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  15. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118PubMedCrossRefGoogle Scholar
  16. Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of isoprenoid quinones and polar lipids. J Microbiol Metheods 2:233–241CrossRefGoogle Scholar
  17. Murray RGE (1984) Genus Lampropedia Schoreter 1886, 151AL. In: NR Krieg, JG Holt (eds) Bergey’s Manual of Systematic Bacteriology. Baltimore: Williams & Wilkins, vol. 1, pp 402–406Google Scholar
  18. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc, NewarkGoogle Scholar
  19. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Manual of methods for general and bacteriology. American Society for Microbiology, Washington DC, pp 607–654Google Scholar
  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  21. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCentralPubMedCrossRefGoogle Scholar
  22. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  23. Willems A, De Ley J, Gillis M, Kersters K (1991) Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis) 1969. Int J Syst Bacteriol 41:445–450CrossRefGoogle Scholar
  24. Xie CH, Yokota A (2003) Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA sequence. J Gen Appl Microbiol 49:345–349PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yong Li
    • 1
  • Tao Wang
    • 1
    • 2
  • Chun-gen Piao
    • 1
  • Lai-fa Wang
    • 1
  • Guo-zhong Tian
    • 1
  • Tian-hui Zhu
    • 2
  • Min-wei Guo
    • 1
  1. 1.The Key Laboratory of State Forestry Administration on Forest Protection, Research Institute of Forest Ecology Environment and ProtectionChinese Academy of ForestryBeijingChina
  2. 2.College of ForestrySichuan Agricultural UniversityYa’anChina

Personalised recommendations