Antonie van Leeuwenhoek

, Volume 108, Issue 1, pp 191–199 | Cite as

Dactylosporangium cerinum sp. nov., a novel actinobacterium isolated from the rhizosphere of Pinus koraiensis Sieb. et Zucc.

  • Chongxi Liu
  • Xuejiao Guan
  • Pinjiao Jin
  • Jinmeng Li
  • Yao Li
  • Lianjie Li
  • Ying Zhou
  • Yue Shen
  • Xiangjing Wang
  • Wensheng Xiang
Original Paper

Abstract

A novel actinobacterium, designated strain NEAU-TPG4T was isolated from rhizosphere soil of Pinus koraiensis Sieb. et Zucc. collected from Luobei, Heilongjiang Province, north China, and characterized using a polyphasic approach. Morphological and chemotaxonomic properties of strain NEAU-TPG4T were consistent with the description of the genus Dactylosporangium. The strain formed finger-shaped sporangia on short sporangiophores that emerged directly from substrate hyphae. The cell-wall peptidoglycan consisted of meso- and 3-hydroxy-diaminopimelic acids; arabinose, xylose and glucose were found as whole-cell sugars. The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol. The predominant menaquinones were identified as MK-9(H8) and MK-9(H6). The predominant cellular fatty acids were identified as iso-C16:0, anteiso-C15:0, anteiso-C17:0 and C18:0. Phylogenetic analysis using 16S rRNA gene sequences also indicated that the strain should be classified in the genus Dactylosporangium and showed that the closest relatives were Dactylosporangiummaewongense Japan Collection of Microorganism (JCM) 15933T (99.6 %), Dactylosporangiumsiamense NBRC 106093T (99.6 %), Dactylosporangiumaurantiacum JCM 3083T (99.5 %) and Dactylosporangiumluteum JCM 17685T (99.5 %). However, the low level of DNA–DNA relatedness and several cultural and physiological characteristics allowed the strain to be distinguished from its closest relatives. Thus, it is proposed that strain NEAU-TPG4T represents a novel Dactylosporangium species. Dactylosporangium cerinum sp. nov. The type strain of D. cerinum is NEAU-TPG4T (=CGMCC 4.7152T = DSM 46712T).

Keywords

Dactylosporangium cerinum sp. nov. Polyphasic taxonomy 16S rRNA gene 

Notes

Acknowledgments

This work was supported in part by Grant from the Science and Technology Research Project of Heilongjiang Provincial Educational Commission (No. 12541001).

Supplementary material

10482_2015_478_MOESM1_ESM.docx (553 kb)
Supplementary material 1 (DOCX 552 kb)

References

  1. Chiaraphongphon S, Suriyachadkun C, Tamura T, Thawai C (2010) Dactylosporangium maewongense sp. nov., isolated from soil. Int J Syst Evol Microbiol 60:1200–1205PubMedCrossRefGoogle Scholar
  2. Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic, London, pp 267–284Google Scholar
  3. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  4. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  6. Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315PubMedCrossRefGoogle Scholar
  7. Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63CrossRefGoogle Scholar
  8. Hayakawa M, Nonomura H (1987) Humic acid–vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  9. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192PubMedCrossRefGoogle Scholar
  10. Jia FY, Liu CX, Wang XJ, Zhao JW, Liu QF, Zhang J, Gao RX, Xiang WS (2013) Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie Van Leeuwenhoek 103:399–408PubMedCrossRefGoogle Scholar
  11. Kelly KL (1964) Inter-Society Color Council–National Bureau of Standards color-name charts illustrated with centroid colors published in USGoogle Scholar
  12. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036PubMedCrossRefGoogle Scholar
  13. Kim BY, Stach JE, Weon HY, Kwon SW, Goodfellow M (2010) Dactylosporangium luridum sp. nov., Dactylosporangium luteum sp. nov. and Dactylosporangium salmoneum sp. nov., nom. rev., isolated from soil. Int J Syst Evol Microbiol 60:1813–1823PubMedCrossRefGoogle Scholar
  14. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  15. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  16. Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics (Society for Applied Bacteriology technical series), vol 20. Academic, New York, pp 173–199Google Scholar
  17. Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291Google Scholar
  18. Lechevalier MP, DeBievre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260CrossRefGoogle Scholar
  19. Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206Google Scholar
  20. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233CrossRefGoogle Scholar
  21. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  22. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  23. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  24. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  25. Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231PubMedCentralPubMedGoogle Scholar
  26. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  27. Thawai C, Suriyachadkun C (2013) Dactylosporangium siamense sp. nov., isolated from soil. Int J Syst Evol Microbiol 63:4033–4038PubMedCrossRefGoogle Scholar
  28. Thawai C, Tanasupawat S, Kudo T (2011) Dactylosporangium tropicum sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:2358–2362PubMedCrossRefGoogle Scholar
  29. Thiemann JE, Pagani H, Beretta G (1967) A new genus of the Actinoplanaceae: Dactylosporangium, gen. nov. Arch Mikrobiol 58:42–52PubMedCrossRefGoogle Scholar
  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCentralPubMedCrossRefGoogle Scholar
  31. Uchida K, Aida K (1984) An improved method for the glycolate test for simple identification of acyl type of bacterial cell walls. J Gen Appl Microbiol 30:131–134CrossRefGoogle Scholar
  32. Urzì C, De Leo F, Schumann P (2008) Kribbella catacumbae sp. nov. and Kribbella sancticallisti sp. nov., isolated from whitish-grey patinas in the catacombs of St. Callistus in Rome Italy. Int J Syst Evol Microbiol 58:2090–2097PubMedCrossRefGoogle Scholar
  33. Vobis G (2012) Genus VIII. Dactylosporangium. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-i, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, the Actinobacteria, 2nd edn, vol 5. Springer, New York, pp 1096–1106Google Scholar
  34. Waksman SA (1961) The Actinomycetes. Classification, identification and descriptions of genera and species, vol 2. Williams and Wilkins, BaltimoreGoogle Scholar
  35. Waksman SA (1967) The Actinomycetes. A summary of current knowledge. Ronald, New YorkGoogle Scholar
  36. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464Google Scholar
  37. Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 16:176–178Google Scholar
  38. Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169PubMedCrossRefGoogle Scholar
  39. Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Chongxi Liu
    • 1
  • Xuejiao Guan
    • 1
  • Pinjiao Jin
    • 1
  • Jinmeng Li
    • 1
  • Yao Li
    • 1
  • Lianjie Li
    • 2
  • Ying Zhou
    • 1
  • Yue Shen
    • 2
  • Xiangjing Wang
    • 1
  • Wensheng Xiang
    • 1
    • 2
  1. 1.Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education CommitteeNortheast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations