Antonie van Leeuwenhoek

, Volume 108, Issue 1, pp 141–150 | Cite as

Two new species of the genus Micromonospora: Micromonospora palomenae sp. nov. and Micromonospora harpali sp. nov. isolated from the insects

  • Baozhu Fang
  • Chongxi Liu
  • Xuejiao Guan
  • Jia Song
  • Junwei Zhao
  • Hui Liu
  • Chuang Li
  • Wenxi Ning
  • Xiangjing Wang
  • Wensheng Xiang
Original Paper

Abstract

Two novel actinobacteria, strains NEAU-CX1T and NEAU-JC6T, were isolated from nymphs of stinkbug (Palomena viridissima Poda) and a beetle (Harpalus sinicus Hope), respectively, collected from Harbin, Heilongjiang Province, China. A polyphasic study was carried out to establish the taxonomic positions of these strains. The phylogenetic analysis based on 16S rRNA gene sequence of strain NEAU-CX1T showed it to be most closely related to Micromonospora coxensis JCM 13248T (99.3 % sequence similarity), Micromonospora purpureochromogenes DSM 43821T (99.1 %) and Micromonospora halophytica JCM 3125T (98.6 %), and that of strain NEAU-JC6T to Micromonospora haikouensis DSM 45626T (99.3 %), Micromonospora carbonacea JCM 3139T (99.1 %) and Micromonospora krabiensis JCM 12869T (99.1 %). The phylogenetic analysis based on gyrB gene sequence of strain NEAU-CX1T showed it to be most closely related to M. purpureochromogenes DSM 43821T (98.0 % sequence similarity), and that of strain NEAU-JC6T to M. haikouensis DSM 45626T (99.0 %) and M. carbonacea JCM 3139T (98.0 %). A combination of DNA–DNA hybridization results and cultural and physiological properties indicated that the two strains can be distinguished from their closest phylogenetic relatives. Thus, strains NEAU-CX1T and NEAU-JC6T represent two novel species of the genus Micromonospora, for which the names Micromonospora palomenae sp. nov. and Micromonospora harpali sp. nov. are proposed. The type strains are NEAU-CX1T (=CGMCC 4.7175T = JCM 30056T) and NEAU-JC6T (=CGMCC 4.7173T = JCM 30055T).

Keywords

Micromonospora palomenae sp. nov. Micromonospora harpali sp. nov. Polyphasic taxonomy 16S rRNA gene gyrB gene 

Notes

Acknowledgments

We thank Dr. Bernhard Schink for his valuable help with naming the species. This work was supported in part by grants from the National Outstanding Youth Foundation (No. 31225024), the National Key Project for Basic Research (No. 2010CB126102), the National Key Technology R&D Program (No. 2012BAD19B06), the National Natural Science Foundation of China (No. 31372006, 31171913, 31071750 and 31471832), the Chang Jiang Scholar Candidates Program for Provincial Universities in Heilongjiang (CSCP), the Science and Technology Research Project of Heilongjiang Provincial Educational Commission (No. 12541001) and the Youth Science Foundation of Heilongjiang Province (No. QC2014C013).

Supplementary material

10482_2015_472_MOESM1_ESM.doc (5.8 mb)
Supplementary material 1 (DOC 5988 kb)

References

  1. Adams AS, Currie CR, Cardoza Y, Klepzig KD, Raffa KF (2009) Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can J For Res 39:1133–1147CrossRefGoogle Scholar
  2. Ara I, Kudo T (2007) Two new species of the genus Micromonospora: Micromonospora chokoriensis sp. nov. and Micromonospora coxensis sp. nov., isolated from sandy soil. J Gen Appl Microbiol 53:29–37PubMedCrossRefGoogle Scholar
  3. Bresinsky A (2014) Ants, plants and fungi: a view on some patterns of interaction and diversity. In: Lüttge U, Beyschlag W, Cushman J (eds) Progress in botany volume, vol 75. Springer, Berlin Heidelberg, pp 3–54CrossRefGoogle Scholar
  4. Brownlie JC, Johnson KN (2009) Symbiont-mediated protection in insect hosts. Trends Microbiol 17:348–354PubMedCrossRefGoogle Scholar
  5. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New YorkGoogle Scholar
  6. Cardoza YJ, Klepzig KD, Raffa KF (2006) Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol Entomol 31:636–645CrossRefGoogle Scholar
  7. Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–284Google Scholar
  8. Currie CR, Wong B, Stuart AE, Schultz TR, Rehner SA, Mueller UG, Sung GH, Spatafora JW, Straus NA (2003) Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science 299:386–388PubMedCrossRefGoogle Scholar
  9. De Ley J, Cattoi H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  10. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315PubMedCrossRefGoogle Scholar
  13. Garcia LC, Martínez-Molina E, Trujillo ME (2010) Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337PubMedCrossRefGoogle Scholar
  14. Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63CrossRefGoogle Scholar
  15. Gunduz EA, Douglas AE (2009) Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc Biol Sci 276:987–991CrossRefGoogle Scholar
  16. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  17. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192PubMedCrossRefGoogle Scholar
  18. Jia FY, Liu CX, Wang XJ, Zhao JW, Liu QF, Zhang J, Gao RX, Xiang WS (2013) Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie Van Leeuwenhoek 103:399–408PubMedCrossRefGoogle Scholar
  19. Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145PubMedCentralPubMedGoogle Scholar
  20. Jongrungruangchok S, Tanasupawat S, Kudo T (2008) Micromonospora krabiensis sp. nov., isolated from marine soil in Thailand. J Gen Appl Microbiol 54:127–133PubMedCrossRefGoogle Scholar
  21. Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535PubMedCrossRefGoogle Scholar
  22. Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors. US government printing office, Washington, DCGoogle Scholar
  23. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  24. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036PubMedCrossRefGoogle Scholar
  25. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  26. Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291Google Scholar
  27. Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206Google Scholar
  28. May RM (1988) How many species are there on earth? Science 24:1441–1449CrossRefGoogle Scholar
  29. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Seviour RJ (2000) A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182PubMedCrossRefGoogle Scholar
  30. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233CrossRefGoogle Scholar
  31. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  32. Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev of Entomol 55:247–266CrossRefGoogle Scholar
  33. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  34. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  35. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654Google Scholar
  36. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  37. Um S, Fraimout A, Sapountzis P, Oh DC, Poulsen M (2013) The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci Rep 3:3250PubMedCentralPubMedGoogle Scholar
  38. Waksman SA (1961) The Actinomycetes, vol. 2, Classification, identification and descriptions of genera and species. Williams and Wilkins, BaltimoreGoogle Scholar
  39. Waksman SA (1967) The Actinomycetes. A summary of knowledge, Ronald, New YorkGoogle Scholar
  40. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  41. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813PubMedGoogle Scholar
  42. Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 16:176–178 [English translation of Microbiology (Beijing)]Google Scholar
  43. Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169PubMedCrossRefGoogle Scholar
  44. Xie QY, Qu Z, Lin HP, Li L, Hong K (2012) Micromonospora haikouensis sp. nov., isolated from mangrove soil. Antonie Van Leeuwenhoek 101:649–655PubMedCrossRefGoogle Scholar
  45. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153PubMedCrossRefGoogle Scholar
  46. Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812CrossRefGoogle Scholar
  47. Yu C, Liu CX, Wang XJ, Zhao JW, Yang LY, Gao RX, Zhang YJ, Xiang WS (2013) Streptomyces polyrhachii sp. nov., a novel actinomycete isolated from the edible Chinese black ant (Polyrhachis vicina Roger). Antonie Van Leeuwenhoek 104:1013–1019PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Baozhu Fang
    • 1
  • Chongxi Liu
    • 1
  • Xuejiao Guan
    • 1
  • Jia Song
    • 2
  • Junwei Zhao
    • 1
  • Hui Liu
    • 1
  • Chuang Li
    • 1
  • Wenxi Ning
    • 1
  • Xiangjing Wang
    • 1
  • Wensheng Xiang
    • 1
    • 2
  1. 1.Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education CommitteeNortheast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations