Antonie van Leeuwenhoek

, Volume 107, Issue 6, pp 1411–1419 | Cite as

Hymenobacter humi sp. nov., a bacterium isolated from soil

  • Sathiyaraj Srinivasan
  • Eun Sun Joo
  • Jae-Jin Lee
  • Myung Kyum Kim
Original Paper


A red-pink coloured, Gram-negative, rod-shaped bacterium designated as strain DG31AT was isolated from soil collected in Seoul, South Korea. The isolate was found to grow optimally at 25 °C on R2A agar. The highest degrees of 16S rRNA gene sequence similarities of the strain were found with Hymenobacter arizonensis JCM 13504T (98.0 %), Hymenobacter glaciei VUG-A130T (96.1 %), Hymenobacter soli PB17T (95.2 %), Hymenobacter antarcticus VUG-A42aaT (94.7 %) and Hymenobacterchitinivorans Txc1T (92.8 %). The DNA G+C content of the novel strain, DG31AT, was determined to be 60.8 mol%. Chemotaxonomic data revealed that the major fatty acids were summed feature 3 (C16:1ω7c and/or C16:1ω6c; 26.7 %), C16:1ω5c (18.9 %) and anteiso-C15:0 (12.9 %); the major polar lipid was identified as phosphatidylethanolamine; the polyamine pattern was found to contain sym-homospermidine; and the major quinone was identified as MK-7. The DNA–DNA relatedness of strain DG31AT with respect to H.arizonensis JCM 13504T was 19.5 ± 2.9 % (reciprocal, 19.3 ± 0.6 %). Based on these data, strain DG31AT should be classified within the genus Hymenobacter as a novel species for which the name Hymenobacter humi sp. nov. is proposed, with the type strain DG31AT (=KCTC 32523T = JCM 19635T).


Cytophagaceae Hymenobacter Taxonomy 



We thank Dr. Aidan C. Parte for checking the etymology of the species name. This work was supported by a special research grant from Seoul Women’s University (2015).

Supplementary material

10482_2015_436_MOESM1_ESM.docx (236 kb)
Supplementary material 1 (DOCX 236 kb)


  1. Baik KS, Seong CN, Moon EY, Park YD, Yi H, Chun J (2006) Hymenobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 56:2189–2192CrossRefPubMedGoogle Scholar
  2. Buck JD (1982) Non-staining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993PubMedCentralPubMedGoogle Scholar
  3. Buczolits SE, Denner BM, Kämpfer P, Busse HJ (2006) Proposal of Hymenobacter norwichensis sp. nov., classification of ‘Taxeobacter ocellatus’, ‘Taxeobacter gelupurpurascens’ and ‘Taxeobacter chitinovorans’ as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 56:2189–2192CrossRefGoogle Scholar
  4. Busse HJ, Auling G (1988) Polyamine pattern as a chemotaxonomic marker within the proteobacteria. Syst Appl Microbiol 11:1–8CrossRefGoogle Scholar
  5. Busse HJ, Bunka S, Hensel A, Lubitz W (1997) Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708CrossRefGoogle Scholar
  6. Chang X, Zheng J, Jiang F, Liu P, Kan W, Qu Z, Fang C, Peng F (2014) Hymenobacter arcticus sp. nov., isolated from glacial till. Int J Syst Evol Microbiol 64:2113–2118CrossRefPubMedGoogle Scholar
  7. Collins MD, Jones D (1981) Distribution of isoprenoid quinine structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354PubMedCentralPubMedGoogle Scholar
  8. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  9. Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  10. Gosink JJ, Woese CR, Staley JT (1998) Polaribactger gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polare marine bacteria of the Cytophaga-Flavobacterium-Bactgerodes group and reclassification of ‘Flectobacillus glomeraatus’ as Polaribacer glomeratus comb. nov. Int J Syst Bacteriol 48:223–235CrossRefPubMedGoogle Scholar
  11. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  12. Han L, Wu SJ, Qin CY, Zhu YH, Lu ZQ, Xie B, Lv J (2014) Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter. Antonie Van Leeuwenhoek 105:971–978CrossRefPubMedGoogle Scholar
  13. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B, Gallikowski CA (1998) Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 21:374–383CrossRefPubMedGoogle Scholar
  14. Hoang VA, Kim YJ, Nguyen NL, Yang DC (2013) Hymenobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 63:661–666CrossRefPubMedGoogle Scholar
  15. Jin L, Lee HG, Kim SG, Lee KC, Ahn CY, Oh HM (2014) Hymenobacter ruber sp. nov., isolated from grass soil. Int J Syst Evol Microbiol 64:979–983CrossRefPubMedGoogle Scholar
  16. Joung Y, Cho SH, Kim H, Kim SB, Joh K (2011) Hymenobacter yonginensis sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 61:1511–1514CrossRefPubMedGoogle Scholar
  17. Kang JY, Chun J, Choi A, Moon SH, Cho JC, Jahng KY (2013) Hymenobacter koreensis sp. nov. and Hymenobacter saemangeumensis sp. nov., isolated from estuarine water. Int J Syst Evol Microbiol 63:4568–4573CrossRefPubMedGoogle Scholar
  18. Kim KH, Im WT, Lee ST (2008) Hymenobacter soli sp. nov., isolated from grass soil. Int J Syst Evol Microbiol 58:941–945CrossRefPubMedGoogle Scholar
  19. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  20. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  21. Klassen JL, Foght JM (2008) Differences in carotenoid composition among Hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl Environ Microbiol 74:2016–2022CrossRefPubMedCentralPubMedGoogle Scholar
  22. Klassen JL, Foght JM (2011) Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 15:45–57CrossRefPubMedGoogle Scholar
  23. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207CrossRefGoogle Scholar
  24. Leadbetter ER (1974) Order II. Cytophagales Nomen novum. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. The Williams & Wilkins Co, Baltimore, p 99Google Scholar
  25. Lee JJ, Srinivasan S, Lim S, Joe M, Lee SH, Kwon SA, Kwon YJ, Lee J, Choi JJ, Lee HM, Auh YK, Kim MK (2014) Hymenobacter swuensis sp. nov., a gamma-radiation-resistant bacteria isolated from mountain soil. Curr microbiol 68:305–310Google Scholar
  26. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  27. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 Newark, DE: MIDI IncCrossRefGoogle Scholar
  28. Reddy GSN, Garcia-Pichel F (2013) Description of Hymenobacter arizonensis sp. nov. from the southwestern arid lands of the United States of America. Antonie Van Leeuwenhoek 103:321–330CrossRefPubMedGoogle Scholar
  29. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  30. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical note 101Google Scholar
  31. Shin YK, Lee JS, Chun CO, Kim HJ, Park YH (1996) Isoprenoid quinine profiles of the Leclercia adecarboxylata KCTC 1036T. J Microbiol Biotechnol 6:68–69Google Scholar
  32. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420CrossRefGoogle Scholar
  33. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  34. Stanier RY (1940) Studies on the cytophagas. J Bacteriol 40:619–636PubMedCentralPubMedGoogle Scholar
  35. Su S, Chen M, Teng C, Jiang S, Zhang C, Lin M, Zhang W (2014) Hymenobacter kanuolensis sp. nov., a novel radiation-resistant bacterium. Int J Syst Evol Microbiol 64:2108–2112CrossRefPubMedGoogle Scholar
  36. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128CrossRefGoogle Scholar
  37. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedCentralPubMedGoogle Scholar
  38. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  39. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  40. Weeks OB (1981) Preliminary studies of the pigments of Flavobacterium breve NCTC 11099 and Flavobacterium odoratum NCTC 11036. In: Reichenbach H, Weeks OB (eds) The Flavobacterium-Cytophaga group. Gesellschaft für Biotechnologische For-schung GmbH, Weinheim, pp 108–114Google Scholar
  41. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedCentralPubMedGoogle Scholar
  42. Zhang JY, Liu XY, Liu SJ (2009) Adhaeribacter terreus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 57:1752–1756CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sathiyaraj Srinivasan
    • 1
  • Eun Sun Joo
    • 1
  • Jae-Jin Lee
    • 1
  • Myung Kyum Kim
    • 1
  1. 1.Department of Bio & Environmental Technology, College of Natural ScienceSeoul Women’s UniversitySeoulKorea

Personalised recommendations