Advertisement

Antonie van Leeuwenhoek

, Volume 107, Issue 5, pp 1337–1349 | Cite as

Novel lactic acid bacteria isolated from the bumble bee gut: Convivina intestini gen. nov., sp. nov., Lactobacillus bombicola sp. nov., and Weissella bombi sp. nov.

  • Jessy Praet
  • Ivan Meeus
  • Margo Cnockaert
  • Kurt Houf
  • Guy Smagghe
  • Peter VandammeEmail author
Original Paper

Abstract

Twelve isolates of lactic acid bacteria (LAB) were obtained in the course of a bumble bee gut microbiota study and grouped into four matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry clusters. Comparative 16S rRNA gene sequence analysis revealed that cluster 1 isolates, represented by strain LMG 28288T, are most closely related to Lactobacillus apis (97.0 % sequence similarity to that of L. apis LMG 26964T). Cluster 2 isolates represented by strain LMG 28290T are most closely related to Weissella hellenica (99.6 % sequence similarity to that of W. hellenica LMG 15125T). The single cluster 3 and 4 isolates had identical 16S rRNA gene sequences which were 94.8 % similar to that of Leuconostoc mesenteroides subsp. mesenteroides LMG 6893T, their nearest phylogenetic neighbour. A polyphasic taxonomic study additionally including comparative pheS sequence analysis, DNA–DNA hybridization experiments, DNA G+C content analysis, (GTG)5-PCR fingerprinting and a biochemical characterization, demonstrated that cluster 1 isolates represent a novel Lactobacillus species for which we propose the name Lactobacillus bombicola sp. nov. with LMG 28288T (= DSM 28793T) as the type strain; and that cluster 2 isolates represent a novel Weissella species for which we propose the name Weissella bombi sp. nov. with LMG 28290T (= DSM 28794T) as the type strain. Cluster 3 and 4 isolates, in contrast, represented a very distinct, novel taxon that could be distinguished from members of the genera Leuconostoc and Fructobacillus, its nearest phylogenetic neighbours, by its cellular morphology, non-fructophilic metabolism and DNA G+C content. We therefore classify both isolates into a novel species representing a novel LAB genus for which the name Convivina intestini gen. nov., sp. nov. is proposed with LMG 28291T (= DSM 28795T) as the type strain.

Keywords

Lactic acid bacteria Lactobacillus Weissella Leuconostocaceae Bumble bee Gut microbiota 

Notes

Acknowledgments

The authors acknowledge support by Ghent University-Special Research Fund (BOF).

Compliance with Ethical Standards

The present research involved sampling of bumble bees for which no permission was required as bumble bees are not included in the “Decree of Species (het Soortenbesluit (http://codex.vlaanderen.be/Zoeken/Document.aspx?DID=1018227&param=informatie])” of the Flemish government with inception on 01/09/2009. The authors do not have a conflict of interest.

Supplementary material

10482_2015_429_MOESM1_ESM.docx (359 kb)
Supplementary material 1 (DOCX 359 kb)

References

  1. Anderson KE, Sheehan TH, Eckholm BJ, Mott BM, DeGrandi-Hoffman G (2011) An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera). Insectes Soc 58(4):431–444. doi: 10.1007/s00040-011-0194-6 CrossRefGoogle Scholar
  2. Audisio CM, Torres MJ, Sabaté DC, Ibarguren C, Apella MC (2011) Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiol Res 166(1):1–13. doi: 10.1016/j.micres.2010.01.003 CrossRefGoogle Scholar
  3. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA 108(2):662–667. doi: 10.1073/pnas.1014743108 CrossRefPubMedCentralPubMedGoogle Scholar
  4. Carolan JC, Murray TE, Fitzpatrick Ú, Crossley J, Schmidt H, Cederberg B, Brown MJF (2012) Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS One 7(1):e29251. doi: 10.1371/journal.pone.0029251 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Cleenwerck I, Gonzalez A, Camu N, Engelbeen K, De Vos P, De Vuyst L (2008) Acetobacter fabarum sp. nov., an acetic acid bacterium from a Ghanaian cocoa bean heap fermentation. Int J Syst Evol Microbiol 58(Pt 9):2180–2185. doi: 10.1099/ijs.0.65778-0 CrossRefPubMedGoogle Scholar
  6. Collins MD, Samelis J, Metaxopoulos JWS (1993) Taxonomic studies on some Leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 75(6):595–603CrossRefPubMedGoogle Scholar
  7. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science (New York, N.Y.) 318(5848):283–287. doi: 10.1126/science.1146498 CrossRefGoogle Scholar
  8. De Baere S, Eeckhaut V, Steppe M, De Maesschalck C, De Backer P, Van Immerseel F, Croubels S (2013) Development of a HPLC-UV method for the quantitative determination of four short-chain fatty acids and lactic acid produced by intestinal bacteria during in vitro fermentation. J Pharm Biomed Anal 80:107–115. doi: 10.1016/j.jpba.2013.02.032 CrossRefPubMedGoogle Scholar
  9. De Bruyne K, Schillinger U, Caroline L, Boehringer B, Cleenwerck I, Vancanneyt M, Vandamme P (2007) Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int J Syst Evol Microbiol 57(Pt 12):2952–2959. doi: 10.1099/ijs.0.65292-0 CrossRefPubMedGoogle Scholar
  10. De Vuyst L, Camu N, De Winter T, Vandemeulebroecke K, Van de Perre V, Vancanneyt M, Cleenwerck I (2008) Validation of the (GTG)(5)-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. Int J Food Microbiol 125(1):79–90. doi: 10.1016/j.ijfoodmicro.2007.02.030 CrossRefPubMedGoogle Scholar
  11. Endo A, Okada S (2008) Reclassification of the genus Leuconostoc and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudoficulneus comb. nov. Int J Syst Evol Microbiol 58(Pt 9):2195–2205. doi: 10.1099/ijs.0.65609-0 CrossRefPubMedGoogle Scholar
  12. Endo A, Salminen S (2013) Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Syst Appl Microbiol 36(6):444–448. doi: 10.1016/j.syapm.2013.06.002 CrossRefPubMedGoogle Scholar
  13. Endo A, Irisawa T, Futagawa-Endo Y, Takano K, du Toit M, Okada S, Dicks LMT (2012) Characterization and emended description of Lactobacillus kunkeei as a fructophilic lactic acid bacterium. Int J Syst Evol Microbiol 62(Pt 3):500–504. doi: 10.1099/ijs.0.031054-0 CrossRefPubMedGoogle Scholar
  14. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  15. Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68(3):810–821. doi: 10.1016/j.ecolecon.2008.06.014 CrossRefGoogle Scholar
  16. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Klein AM (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science (New York, N.Y.) 339(6127):1608–1611. doi: 10.1126/science.1230200 CrossRefGoogle Scholar
  17. Gevers D (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Ecol 205:31–36CrossRefGoogle Scholar
  18. Ghyselinck J, Van Hoorde K, Hoste B, Heylen K, De Vos P (2011) Evaluation of MALDI-TOF MS as a tool for high-throughput dereplication. J Microbiol Methods 86(3):327–336. doi: 10.1016/j.mimet.2011.06.004 CrossRefPubMedGoogle Scholar
  19. Goulson D, Hanley ME, Darvill B, Ellis JS (2006) Biotope associations and the decline of bumblebees (Bombus spp.). J Insect Conserv 10(2):95–103. doi: 10.1007/s10841-006-6286-3 CrossRefGoogle Scholar
  20. Goulson D, Lye GC, Darvill B, Hymenoptera KW (2008) The decline and conservation of bumblebees. Biol Conserv 122:1–38CrossRefGoogle Scholar
  21. Grixti JC, Wong LT, Cameron SA, Favret C (2009) Decline of bumble bees (Bombus) in the North American Midwest. Biol Conserv 142(1):75–84. doi: 10.1016/j.biocon.2008.09.027 CrossRefGoogle Scholar
  22. Houf K, On SLW, Coenye T, Debruyne L, De Smet S, Vandamme P (2009) Arcobacter thereius sp. nov., isolated from pigs and ducks. Int J Syst Evol Microbiol 59(Pt 10):2599–2604. doi: 10.1099/ijs.0.006650-0 CrossRefPubMedGoogle Scholar
  23. Killer J, Kopecný J, Mrázek J, Rada V, Benada O, Koppová I, Straka J (2009) Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 59(Pt 8):2020–2024. doi: 10.1099/ijs.0.002915-0 CrossRefPubMedGoogle Scholar
  24. Killer J, Dubna S, Sedlacek I, Svec P (2013) Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera) having in vitro inhibitory effect on causative agents of American and European Foulbrood. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.053033-0 Google Scholar
  25. Killer J, Votavová A, Valterová I, Vlková E, Rada V, Hroncová Z (2014) Lactobacillus bombi sp. nov., from the digestive tract of laboratory-reared bumblebee queens (Bombus terrestris). Int J Syst Evol Microbiol 64(Pt 8):2611–2617. doi: 10.1099/ijs.0.063602-0 CrossRefPubMedGoogle Scholar
  26. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. doi: 10.1099/ijs.0.038075-0 CrossRefPubMedGoogle Scholar
  27. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351. doi: 10.1099/ijs.0.059774-0 CrossRefPubMedGoogle Scholar
  28. Koch H, Schmid-Hempel P (2011) Bacterial communities in central European bumblebees: low diversity and high specificity. Microb Ecol 62(1):121–133. doi: 10.1007/s00248-011-9854-3 CrossRefPubMedGoogle Scholar
  29. MacFaddin JF (1980) Biochemical tests for identification of medical bacteria. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  30. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20(3):619–628. doi: 10.1111/j.1365-294X.2010.04959.x CrossRefPubMedGoogle Scholar
  31. Meeus I, Brown MJF, De Graaf DC, Smagghe G (2011) Effects of invasive parasites on bumble bee declines. Conserv Biol 25(4):662–671. doi: 10.1111/j.1523-1739.2011.01707.x CrossRefPubMedGoogle Scholar
  32. Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8(2):258–272. doi: 10.1111/j.1462-2920.2005.00893.x CrossRefPubMedGoogle Scholar
  33. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  34. Olofsson TC, Vásquez A (2008) Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol 57(4):356–363. doi: 10.1007/s00284-008-9202-0 CrossRefPubMedGoogle Scholar
  35. Olofsson TC, Alsterfjord M, Nilson B, Butler E, Vásquez A (2014) Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isol. Int J Syst Evol Microbiol 64(Pt 9):3109–3119. doi: 10.1099/ijs.0.059600-0 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Rada V, Petr J (2000) A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J Microbiol Methods 43(2):127–132CrossRefPubMedGoogle Scholar
  37. Rasmont P, Pauly A, Terzo M, Patiny S, Michez D, Iserbyt S, Haubruge E (2005) The survey of wild bees (Hymenoptera, Apoidea) in Belgium and France. Retrieved from www.atlashymenoptera.net. Accessed 27 Dec 2013
  38. Snauwaert I, Papalexandratou Z, De Vuyst L, Vandamme P (2013) Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. Int J Syst Evol Microbiol 63:1709–1716. doi: 10.1099/ijs.0.040311-0 CrossRefPubMedGoogle Scholar
  39. Stackebrandt E, Smith D, Casaregola S, Varese GC, Verkleij G, Lima N, Bridge P (2014) Deposit of microbial strains in public service collections as part of the publication process to underpin good practice in science. SpringerPlus 3(1):208. doi: 10.1186/2193-1801-3-208 CrossRefPubMedCentralPubMedGoogle Scholar
  40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. molecular biology and evolution. Mol Biol Evol 28:2731–2739CrossRefPubMedCentralPubMedGoogle Scholar
  41. Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, Olofsson TC (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7(3):e33188. doi: 10.1371/journal.pone.0033188 CrossRefPubMedCentralPubMedGoogle Scholar
  42. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman W (Eds)(2009). Bergey’s manual of dystematic bacteriology Volume 3: The firmicutes. doi: 10.1007/978-0-387-68489-5
  43. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10:506–513PubMedGoogle Scholar
  44. Williams PH (1982) The distribution and decline of British bumble bees (Bombus Latr.). J Apic Res 21(4):236–245Google Scholar
  45. Williams P, Colla S, Xie Z (2009) Bumblebee vulnerability: common correlates of winners and losers across three continents. Conserv Biol 23(4):931–940. doi: 10.1111/j.1523-1739.2009.01176.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jessy Praet
    • 1
  • Ivan Meeus
    • 2
  • Margo Cnockaert
    • 1
  • Kurt Houf
    • 3
  • Guy Smagghe
    • 2
  • Peter Vandamme
    • 1
    Email author
  1. 1.Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of SciencesGhent UniversityGhentBelgium
  2. 2.Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  3. 3.Department of Veterinary Public Health and Food Safety, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium

Personalised recommendations