Advertisement

Antonie van Leeuwenhoek

, Volume 107, Issue 5, pp 1307–1313 | Cite as

Bifidobacterium commune sp. nov. isolated from the bumble bee gut

  • Jessy Praet
  • Ivan Meeus
  • Margo Cnockaert
  • Maarten Aerts
  • Guy Smagghe
  • Peter VandammeEmail author
Original Paper

Abstract

Bifidobacteria were isolated from the gut of Bombus lapidarius, Bombus terrestris and Bombus hypnorum bumble bees by direct isolation on modified trypticase phytone yeast extract agar. The MALDI-TOF MS profiles of four isolates (LMG 28292T, R-53560, R-53124, LMG 28626) were found to be identical and did not cluster with the profiles of established Bifidobacterium species. Analysis of the 16S rRNA gene sequence of strain LMG 28292T revealed that LMG 28292T is most closely related to the Bifidobacterium bohemicum type strain (96.8 %), which was also isolated from bumble bee gut specimens. The hsp60 gene of strain LMG 28292T shows 85.8 % sequence similarity to that of the B. bohemicum type strain. The (GTG)5-PCR profiles and the hsp60 sequences of all four isolates were indistinguishable; however, three different phenotypes were observed among the four isolates by means of the API 50CHL microtest system. Based on the phylogenetic, genotypic and phenotypic data, we propose to classify the four isolates within the novel species Bifidobacterium commune sp. nov., with LMG 28292T (= DSM 28792T) as the type strain.

Keywords

Bifidobacteria Bumble bee Gut microbiota Isolation 

Notes

Acknowledgments

The authors acknowledge support by Ghent University-Special Research Fund (BOF).

Compliance with ethical standards

The present research involved sampling of bumble bees for which no permission was required as bumble bees are not included in the “Decree of Species (het Soortenbesluit (http://codex.vlaanderen.be/Zoeken/Document.aspx?DID=1018227&param=informatie])” of the Flemish government with inception on 01/09/2009. The authors do not have a conflict of interest.

Supplementary material

10482_2015_425_MOESM1_ESM.docx (119 kb)
Supplementary material 1 (DOCX 119 kb)

References

  1. Audisio CM, Torres MJ, Sabaté DC, Ibarguren C, Apella MC (2011) Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiol Res 166(1):1–13. doi: 10.1016/j.micres.2010.01.003 CrossRefGoogle Scholar
  2. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA 108(2):662–667. doi: 10.1073/pnas.1014743108 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Cariveau DP, Powell Elijah J, Koch H, Winfree R, Moran NA (2014) Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J 1–11:2369–2379. doi: 10.1038/ismej.2014.68 CrossRefGoogle Scholar
  4. Carolan JC, Murray TE, Fitzpatrick Ú, Crossley J, Schmidt H, Cederberg B, Brown MJF (2012) Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS One 7(1):e29251. doi: 10.1371/journal.pone.0029251 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Cleenwerck I, Gonzalez A, Camu N, Engelbeen K, De Vos P, De Vuyst L (2008) Acetobacter fabarum sp. nov., an acetic acid bacterium from a Ghanaian cocoa bean heap fermentation. Int J Syst Evol Microbiol 58(9):2180–2185. doi: 10.1099/ijs.0.65778-0 CrossRefPubMedGoogle Scholar
  6. Crotti E, Sansonno L, Prosdocimi EM, Vacchini V, Hamdi C, Cherif A, Balloi A (2013) Microbial symbionts of honeybees: a promising tool to improve honeybee health. New Biotechnol 30(6):716–722. doi: 10.1016/j.nbt.2013.05.004 CrossRefGoogle Scholar
  7. De Baere S, Eeckhaut V, Steppe M, De Maesschalck C, De Backer P, Van Immerseel F, Croubels S (2013) Development of a HPLC-UV method for the quantitative determination of four short-chain fatty acids and lactic acid produced by intestinal bacteria during in vitro fermentation. J Pharm Biomed Anal 80:107–115. doi: 10.1016/j.jpba.2013.02.032 CrossRefPubMedGoogle Scholar
  8. Endo A, Salminen S (2013) Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Syst Appl Microbiol 36(6):444–448. doi: 10.1016/j.syapm.2013.06.002 CrossRefPubMedGoogle Scholar
  9. Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci 109(27):11002–11007. doi: 10.1073/pnas.1202970109 CrossRefPubMedCentralPubMedGoogle Scholar
  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  11. Gevers D (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Ecol 205:31–36CrossRefGoogle Scholar
  12. Ghyselinck J, Van Hoorde K, Hoste B, Heylen K, De Vos P (2011) Evaluation of MALDI-TOF MS as a tool for high-throughput dereplication. J Microbiol Methods 86(3):327–336. doi: 10.1016/j.mimet.2011.06.004 CrossRefPubMedGoogle Scholar
  13. Goulson D, Hanley ME, Darvill B, Ellis JS (2006) Biotope Associations and the Decline of Bumblebees (Bombus spp.). J Insect Conserv 10(2):95–103. doi: 10.1007/s10841-006-6286-3 CrossRefGoogle Scholar
  14. Grixti JC, Wong LT, Cameron SA, Favret C (2009) Decline of bumble bees (Bombus) in the North American Midwest. Biol Conserv 142(1):75–84. doi: 10.1016/j.biocon.2008.09.027 CrossRefGoogle Scholar
  15. Hamdi C, Balloi A, Essanaa J, Crotti E, Gonella E, Raddadi N, Cherif A (2011) Gut microbiome dysbiosis and honeybee health. J Appl Entomol 135(7):524–533. doi: 10.1111/j.1439-0418.2010.01609.x CrossRefGoogle Scholar
  16. Hoefman S, Van Hoorde K, Boon N, Vandamme P, De Vos P, Heylen K (2012) Survival or revival: long-term preservation induces a reversible viable but non-culturable state in methane-oxidizing bacteria. PLoS One 7(4):e34196. doi: 10.1371/journal.pone.0034196 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Killer J, Kopecný J, Mrázek J, Rada V, Benada O, Koppová I, Straka J (2009) Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 59(Pt 8):2020–2024. doi: 10.1099/ijs.0.002915-0 CrossRefPubMedGoogle Scholar
  18. Killer J, Kopečný J, Mrázek J, Koppová I, Havlík J, Benada O, Kott T (2011) Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 61(Pt 6):1315–1321. doi: 10.1099/ijs.0.022525-0 CrossRefPubMedGoogle Scholar
  19. Killer J, Dubna S, Sedlacek I, Svec P (2013) Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera) having in vitro inhibitory effect on causative agents of American and European foulbrood. Int J Syst Evol Microbiol 1–16:152–157. doi: 10.1099/ijs.0.053033-0 Google Scholar
  20. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. doi: 10.1099/ijs.0.038075-0 CrossRefPubMedGoogle Scholar
  21. MacFaddin JF (1980) Biochemical tests for identification of medical bacteria, 2nd edn. Lippincott Williams and Wilkins, Philadelphia, p 527Google Scholar
  22. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  23. Okamoto M, Benno Y, Leung K-P, Maeda N (2008) Bifidobacterium tsurumiense sp. nov., from hamster dental plaque. Int J Syst Evol Microbiol 58(Pt 1):144–148. doi: 10.1099/ijs.0.65296-0 CrossRefPubMedGoogle Scholar
  24. Orban JI, Patterson JA (2000) Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J Microbiol Methods 40(3):221–224. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10802138. Accessed 27 Jan 2015
  25. Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C (2005) Review article: bifidobacteria as probiotic agents—physiological effects and clinical benefits. Aliment Pharmacol Ther 22(6):495–512. doi: 10.1111/j.1365-2036.2005.02615.x CrossRefPubMedGoogle Scholar
  26. Rada V, Petr J (2000) A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J Microbiol Methods 43(2):127–132. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11121611. Accessed 24 July 2013
  27. Rasmont P, Pauly A, Terzo M, Patiny S, Michez D, Iserbyt S, Haubruge E (2005) The survey of wild bees (Hymenoptera, Apoidea) in Belgium and France. Retrieved from www.atlashymenoptera.net. Accessed 27 Dec 2013
  28. Snauwaert I, Papalexandratou Z, De Vuyst L, Vandamme P (2013) Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. Int J Syst Evol Microbiol 63(Pt 5):1709–1716. doi: 10.1099/ijs.0.040311-0 CrossRefPubMedGoogle Scholar
  29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, S K (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedCentralPubMedGoogle Scholar
  30. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedGoogle Scholar
  31. Williams PH (1982) The distribution and decline of British bumble bees (Bombus Latr.). J Apic Res 21(4):236–245Google Scholar
  32. Williams P, Colla S, Xie Z (2009) Bumblebee vulnerability: common correlates of winners and losers across three continents. Conserv Biol: J Soc Conserv Biol 23(4):931–940. doi: 10.1111/j.1523-1739.2009.01176.x CrossRefGoogle Scholar
  33. Yin X, Chambers JR, Barlow K, Park AS, Wheatcroft R (2005) The gene encoding xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (xfp) is conserved among Bifidobacterium species within a more variable region of the genome and both are useful for strain identification. FEMS Microbiol Lett 246(2):251–257. doi: 10.1016/j.femsle.2005.04.013 CrossRefPubMedGoogle Scholar
  34. Zhu L (2003) Species identification of genus Bifidobacterium based on partial HSP60 gene sequences and proposal of Bifidobacterium thermacidophilum subsp. porcinum subsp. nov. Int J Syst Evol Microbiol 53(5):1619–1623. doi: 10.1099/ijs.0.02617-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jessy Praet
    • 1
  • Ivan Meeus
    • 2
  • Margo Cnockaert
    • 1
  • Maarten Aerts
    • 1
  • Guy Smagghe
    • 2
  • Peter Vandamme
    • 1
    Email author
  1. 1.Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of SciencesGhent UniversityGhentBelgium
  2. 2.Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium

Personalised recommendations