Antonie van Leeuwenhoek

, Volume 107, Issue 5, pp 1271–1280 | Cite as

Rhodococcus agglutinans sp. nov., an actinobacterium isolated from a soil sample

  • Qian-Qian Guo
  • Hong Ming
  • Xiao-Ling Meng
  • Yan-Yan Duan
  • Rui GaoEmail author
  • Jian-Xin Zhang
  • Jian-Rong Huang
  • Wen-Jun Li
  • Guo-Xing NieEmail author
Original Paper


A Gram-positive, aerobic, non-motile and non-spore forming strain, designated CFH S0262T, was isolated from a soil sample collected from Catba island in Halong Bay, Vietnam. A polyphasic approach was used to study the taxonomic position of this new isolate. Phylogenetic analyses based on 16S rRNA gene sequence showed that strain CFH S0262T belongs to the genus Rhodococcus and clustered with Rhodococcus soli DSD51WT, Rhodococcus hoagii NBRC 103062T, Rhodococcus defluvii CallT and Rhodococcus kunmingensis YIM 45607T (98.7, 98.5, 97.9 and 97.6 % similarities, respectively). Strain CFH S0262T could grow in the presence of NaCl (0–4 %, optimum 0–3 %), at pH 6.0–8.0 (optimum, pH 7.0) and at 10–40 °C (optimum, 28 °C). The predominant menaquinones of strain CFH S0262T were identified as MK-8 (H2) and MK-8 (H4). The major fatty acids (≥10 %) were found to be C16:0 and C18:1ω9c. The polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, a glycolipid and two unidentified phospholipids. The DNA G+C content was determined to be 71.4 mol%. Based on a comparative analysis of phenotypic and genotypic characteristics, in combination with low values of DNA–DNA hybridization between strain CFH S0262T and its closest neighbours, it is proposed that strain CFH S0262T represents a novel species of the genus Rhodococcus, for which the name Rhodococcus agglutinans sp. nov., is proposed, with the type strain CFH S0262T (=CCTCC AB2014297T=KCTC 39118T).


Rhodococcus agglutinans sp. nov. Rhodococcus 16S rRNA gene Polyphasic taxonomy Halong Bay 



The authors are grateful to Prof. Hans-Peter Klenk (DSMZ, Germany) and Dr. Tomohiko Tamura (NBRC, Japan) for their kind providing the reference type strains and Prof. Aharon Oren (The Hebrew University of Jerusalem, Israel) for his kind help with the Latin etymology for the new species. This research was supported by Natural Science Foundation of China (No. 31372545), Project of China tobacco Yunnan industrial Co. Ltd. (No. 2014YL01), Program for Innovative Research Team (in Science and Technology) in University of Henan Province (14IRTSTHN013), Plan for Scientific Innovation Talent of Henan Province (154100510010), Scientific Research Fund of Xinxiang Medical University (2013QN126), and Research Project of Education Department of Henan Province of China (2011A180025).

Conflict of interest

The authors declare that they have no direct or indirect conflict of interest.

Supplementary material

10482_2015_421_MOESM1_ESM.doc (3 mb)
Supplementary material 1 (DOC 3116 kb)


  1. Cerny G (1978) Studies on the aminopeptidase test for the distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:113–122CrossRefGoogle Scholar
  2. Christensen H, Angen Y, Mutters R, Olsen JE, Bisgaard M (2000) DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102CrossRefPubMedGoogle Scholar
  3. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470CrossRefGoogle Scholar
  4. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in Actinomycetes and Corynebacteria. J Gen Microbiol 100:221–230CrossRefPubMedGoogle Scholar
  5. Dastager SG, Mawlankar RB, Tang S-K, Srinivasan K, Joseph N, Shouche YS (2014) Rhodococcus enclensis sp. nov., new member of Rhodococcus genus. Int J Syst Evol Microbiol 64:2693–2697CrossRefPubMedGoogle Scholar
  6. Eberson F (1918) A bacteriologic study of the diphtheroid organisms with special reference to Hodgkin’s disease. J Infect Dis 10:1–42Google Scholar
  7. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  8. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  10. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416CrossRefGoogle Scholar
  11. Fuhrmann C, Soedarmanto I, Lämmler C (1997) Studies on the rod-coccus life cycle of Rhodococcus equi. J Vet Med Ser B 44:287–294CrossRefGoogle Scholar
  12. Gabriels P, Joosen H, Put E, Verhaegen J, Magerman K, Cartuyvels R (2006) Recurrent Rhodococcus equi infection with fatal outcome in an immunocompetent patient. Eur J Clin Microbiol Infect Dis 25:46–48CrossRefPubMedGoogle Scholar
  13. Garrity GM (2014) Conservation of Rhodococcus equi (Magnusson 1923) Goodfellow and Alderson 1977 and rejection of Corynebacterium hoagii (Morse 1912) Eberson 1918. Int J Syst Evol Microbiol 64:311–312CrossRefPubMedGoogle Scholar
  14. Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715CrossRefPubMedGoogle Scholar
  15. Goodfellow M, Alderson G (1977) The Actinomycete-genus Rhodococcus: a home for the ‘rhodochrous’ complex. J Gen Microbiol 100:99–122CrossRefPubMedGoogle Scholar
  16. Goodfellow M, Alderson G, Chun J (1998) Rhodococcal systematics: problems and developments. Antonie Van Leeuwenhoek 74:3–20CrossRefPubMedGoogle Scholar
  17. Goodfellow M, Sangal V, Jones AL, Sutcliffe IC (2015) Charting stormy waters: A commentary on the nomenclature of the equine pathogen variously named Prescottella equi, Rhodococcus equi and Rhodococcus hoagii. Equine Vet J. doi: 10.1111/evj.12399 Google Scholar
  18. Groth I, Rodríguez C, Schütze B, Schmitz P, Leistner E, Goodfellow M (2004) Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp. nov., and K. terrestris sp. nov. Int J Syst Evol Microbiol 54:2121–2129CrossRefPubMedGoogle Scholar
  19. Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322CrossRefGoogle Scholar
  20. Jones AL, Brown JM, Mishra V, Perry JD, Steigerwalt AG, Goodfellow M (2004) Rhodococcus gordoniae sp. nov., an actinomycete isolated from clinical material and phenol-contaminated soil. Int J Syst Evol Microbiol 54:407–411CrossRefPubMedGoogle Scholar
  21. Jones AL, Sutcliffe IC, Goodfellow M (2013a) Prescottia equi gen. nov., comb. nov.: a new home for an old pathogen. Antonie Van Leeuwenhoek 103:655–671CrossRefPubMedGoogle Scholar
  22. Jones AL, Sutcliffe IC, Goodfellow M (2013b) Proposal to replace the illegitimate genus name Prescottia Jones et al. 2013 with the genus name Prescottella gen. nov. and to replace the illegitimate combination Prescottia equi Jones et al. 2013 with Prescottella equi comb. nov. Antonie van Leeuwenhoek 103:1405–1407CrossRefPubMedGoogle Scholar
  23. Kämpfer P, Wellner S, Lohse K, Lodders N, Martin K (2013) Rhodococcus cerastii sp. nov. and Rhodococcus trifolii sp. nov., two novel species isolated from leaf surfaces. Int J Syst Evol Microbiol 63:1024–1029CrossRefPubMedGoogle Scholar
  24. Kämpfer P, Dott W, Martin K, Glaeser SP (2014) Rhodococcus defluvii sp. nov., isolated from wastewater of a bioreactor and formal proposal to reclassify [Corynebacterium hoagii] and Rhodococcus equi as Rhodococcus hoagii comb. nov. Int J Syst Evol Microbiol 64:755–761CrossRefPubMedGoogle Scholar
  25. Kelly KL (1964) Color-name charts illustrated with centroid colors. Inter-Society Color Council-National Bureau of Standards, ChicagoGoogle Scholar
  26. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  27. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  28. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703–704CrossRefPubMedGoogle Scholar
  29. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367CrossRefGoogle Scholar
  30. Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443CrossRefGoogle Scholar
  31. Leifson E (1960) Atlas of bacterial flagellation. Academic Press, LondonCrossRefGoogle Scholar
  32. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57:1424–1428CrossRefPubMedGoogle Scholar
  33. Li SH, Yu XY, Park DJ, Hozzein WN, Kim CJ, Shu WS, Wadaan MA, Ding LX, Li WJ (2015) Rhodococcus soli sp. nov., an actinobacterium isolated from soil using a resuscitative technique. Antonie Van Leeuwenhoek 107:357–366CrossRefPubMedGoogle Scholar
  34. Magnusson H (1923) Spezifische infektiose Pneumonie beim Fohlen. Ein neuer Entreneger beim Pferde. Archiv fur wiss prakt Tierheilkd 50:22–38 (in German)Google Scholar
  35. Mcneil MM, Brown JM (1994) The medically important aerobic actinomycetes: epidemiology and microbiology. Clin Microbiol Rev 7:357PubMedCentralPubMedGoogle Scholar
  36. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  37. Ming H, Yin YR, Li S, Nie GX, Yu TT, Zhou EM, Liu L, Dong L, Li WJ (2014) Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 64:650–656CrossRefPubMedGoogle Scholar
  38. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95CrossRefGoogle Scholar
  39. Minnikin DE, Hutchinson IG, Caldicott A, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 188:221–233CrossRefGoogle Scholar
  40. Morse ME (1912) A study of the diphtheria group of organisms by the biometrical method. J Infect Dis 11:253–285CrossRefGoogle Scholar
  41. Parte AC (2014) LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:D613–D616CrossRefPubMedCentralPubMedGoogle Scholar
  42. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  43. Sangal V, Jones AL, Goodfellow M, Hoskisson PA, Kämpfer P, Sutcliffe IC (2015) Genomic analyses confirm close relatedness between Rhodococcus defluvii and Rhodococcus equi (Rhodococcus hoagii). Arch Microbiol 197:113–116CrossRefPubMedGoogle Scholar
  44. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16Google Scholar
  45. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  46. Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  47. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedCentralPubMedGoogle Scholar
  48. Tang SK, Wang Y, Chen Y, Lou K, Cao LL, Xu LH, Li WJ (2009) Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 59:2025–2032CrossRefPubMedGoogle Scholar
  49. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedCentralPubMedGoogle Scholar
  50. Tindall BJ (2014a) The correct name of the taxon that contains the type strain of Rhodococcus equi. Int J Syst Evol Microbiol 64:302–308CrossRefPubMedGoogle Scholar
  51. Tindall B (2014b) A note on the genus name Rhodococcus Zopf 1891 and its homonyms. Int J Syst Evol Microbiol 64:1062–1064CrossRefPubMedGoogle Scholar
  52. Waksman SA (1967) The actinomycetes. A summary of current knowledge. Ronald Press, New YorkGoogle Scholar
  53. Wang YX, Wang HB, Zhang YQ, Xu LH, Jiang CL, Li WJ (2008) Rhodococcus kunmingensis sp. nov., an actinobacterium isolated from a rhizosphere soil. Int J Syst Evol Microbiol 58:1467–1471CrossRefPubMedGoogle Scholar
  54. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153CrossRefPubMedGoogle Scholar
  55. Yoon JH, Cho YG, Kang SS, Kim SB, Lee ST, Park YH (2000) Rhodococcus koreensis sp. nov., a 2, 4-dinitrophenol-degrading bacterium. Int J Syst Evol Microbiol 50:1193–1201CrossRefPubMedGoogle Scholar
  56. Yu TT, Yao JC, Ming H, Yin YR, Zhou EM, Liu MJ, Tang SK, Li WJ (2013) Thermus tengchongensis sp. nov., isolated from a geothermally heated soil sample in Tengchong, Yunnan, south-west China. Antonie Van Leeuwenhoek 103:513–518CrossRefPubMedGoogle Scholar
  57. Zopf W (1891) Über Ausscheidung von Fettfarbstoffen (Lipochromen) seitens gewisser Spaltpilze. BerDtsch Bot Ges 9:22–28Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Qian-Qian Guo
    • 1
  • Hong Ming
    • 2
  • Xiao-Ling Meng
    • 1
  • Yan-Yan Duan
    • 1
  • Rui Gao
    • 3
    Email author
  • Jian-Xin Zhang
    • 1
  • Jian-Rong Huang
    • 1
  • Wen-Jun Li
    • 4
  • Guo-Xing Nie
    • 1
    Email author
  1. 1.College of FisheriesHenan Normal UniversityXinxiangPeople’s Republic of China
  2. 2.College of Life Sciences and TechnologyXinxiang Medical UniversityXinxiangPeople’s Republic of China
  3. 3.China Tobacco Yunnan Industrial Co., LtdKunmingPeople’s Republic of China
  4. 4.State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and EvolutionSun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations