Antonie van Leeuwenhoek

, Volume 107, Issue 5, pp 1155–1163 | Cite as

Sulfitobacter pacificus sp. nov., isolated from the red alga Pyropia yezoensis

  • Youhei Fukui
  • Mahiko Abe
  • Masahiro Kobayashi
  • Masataka Satomi
Original Paper


Three Gram-negative, aerobic, halophilic bacterial strains, SCM2-10T, SCM-4, and 14C-6, were isolated from the algal medium of the red alga Pyropia yezoensis (previously classified as Porphyra yezoensis) grown in laboratory experiments. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the organisms with high similarities to the three isolates are Sulfitobacter geojensis MM-124T (98.7 %), Sulfitobacter noctilucicola NB-77T (98.7 %), Sulfitobacter noctilucae NB-68T (98.6 %), Sulfitobacter mediterraneus CH-B427T (97.6 %), and Sulfitobacter porphyrae SCM-1T (97.6 %), and that the three isolates belong to the genus Sulfitobacter, within the class Alphaproteobacteria. The DNA G+C contents of the three isolates were found to be in the range of 56.5–57.1 mol%. DNA–DNA hybridization experiments demonstrated that the genomic relatedness between strain SCM2-10T and type strains of other Sulfitobacter species was in the range of 6.2–27.1 %. The predominant respiratory quinone of the three isolates was identified as ubiquinone-10. The dominant polar lipids in the three isolates were found to be phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, and an unidentified amino lipid. The major fatty acid in the three isolates is C18:1ω7c. Strain SCM2-10T demonstrated unique phenotypic characteristics, which differed from those of type strains of other Sulfitobacter species. Based on the phylogenetic, genetic, phenotypic, and chemotaxonomic data, we propose a novel species of the genus Sulfitobacter, which we named as Sulfitobacter pacificus sp. nov. The type strain of this species is strain SCM2-10T (=LMG 27113T = NBRC 109915T).


Sulfitobacter pacificus sp. nov. Red alga Pyropia yezoensis Taxonomy 



We would like to thank Professor H. Saito (Ishikawa Prefectural University, Japan) for his help with the GC–MS analysis. We are grateful to Professor J. P. Euzéby (École Nationale Vétérinaire, France) for his suggestions for the Latin etymology of this species name.


  1. Akagawa-Matsushita M, Itoh T, Katayama Y, Kuraishi H, Yamasato K (1992) Isoprenoid quinone composition of some marine Alteromonas, Marinomonas, Deleya, Pseudomonas and Shewanella species. J Gen Microbiol 138:2275–2281CrossRefGoogle Scholar
  2. Baumann L, Baumann P, Mandel M, Allen RD (1972) Taxonomy of aerobic marine eubacteria. J Bacteriol 110:402–429PubMedCentralPubMedGoogle Scholar
  3. Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lünsdorf H, Pukall R, Wagner-Döbler I (2005) Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096CrossRefPubMedGoogle Scholar
  4. Euzéby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47:590–592CrossRefPubMedGoogle Scholar
  5. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  6. Fukui Y, Abe M, Kobayashi M, Shimada Y, Saito H, Oikawa H, Yano Y, Satomi M (2014a) Sulfitobacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis. Int J Syst Evol Microbiol 64:438–443CrossRefPubMedGoogle Scholar
  7. Fukui Y, Abe M, Kobayashi M, Yano Y, Satomi M (2014b) Isolation of Hyphomonas strains that induce normal morphogenesis in protoplasts of the marine red alga Pyropia yezoensis. Microb Ecol 68:556–566CrossRefPubMedGoogle Scholar
  8. Hong Z, Lai Q, Luo Q, Jiang S, Zhu R, Liang J, Gao Y (2015) Sulfitobacter pseudonitzschiae sp. nov., isolated from the toxic marine diatom Pseudo-nitzschia multiseries. Int J Syst Evol Microbiol 65:95–100CrossRefPubMedGoogle Scholar
  9. Ikemoto S, Katoh K, Komagata K (1978) Cellular fatty acid composition in methanol-utilizing bacteria. J Gen Appl Microbiol 24:41–49CrossRefGoogle Scholar
  10. Ivanova EP, Gorshkova NM, Sawabe T, Zhukova NV, Hayashi K, Kurilenko VV, Alexeeva Y, Buljan V, Nicolau DV, Mikhailov VV, Christen R (2004) Sulfitobacter delicatus sp. nov. and Sulfitobacter dubius sp. nov., respectively from a starfish (Stellaster equestris) and sea grass (Zostera marina). Int J Syst Evol Microbiol 54:475–480CrossRefPubMedGoogle Scholar
  11. Johnson JL (1991) Isolation and purification of nucleic acids. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 1–19Google Scholar
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxone: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  13. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207CrossRefGoogle Scholar
  14. Kwak M-J, Lee J-S, Lee KC, Kim KK, Eom MK, Kim BK, Kim JF (2014) Sulfitobacter geojensis sp. nov., Sulfitobacter noctilucae sp. nov., and Sulfitobacter noctilucicola sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 64:3760–3767CrossRefPubMedGoogle Scholar
  15. Labrenz M, Tindall BJ, Lawson PA, Collins MD, Schumann P, Hirsch P (2000) Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., alpha-3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 50:303–313CrossRefPubMedGoogle Scholar
  16. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  17. Luthria DL, Sprecher H (1993) 2-alkenyl-4,4-dimethyloxazolines as derivatives for the structural elucidation of iosmeric unsaturated fatty acids. Lipids 28:561–564CrossRefPubMedGoogle Scholar
  18. Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174CrossRefPubMedCentralPubMedGoogle Scholar
  19. Marshall K, Joint I, Callow ME, Callow JA (2006) Effect of marine bacterial isolates on the growth and morphology of axenic plantlets of the green alga Ulva linza. Microbial Ecol 52:302–310CrossRefGoogle Scholar
  20. Matsuo Y, Suzuki M, Kasai H, Shizuri Y, Harayama S (2003) Isolation and phylogenetic characterization of bacteria capable of inducing differentiation in the green alga Monostroma oxyspermum. Environ Microbiol 5:25–35CrossRefPubMedGoogle Scholar
  21. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  22. Mumford TF, Miura A (1988) Porphyra as food: cultivation and economics. In: Lembi CA, Waaland JR (eds) Algae and human affairs. Cambridge University Press, Cambridge, pp 87–117Google Scholar
  23. Pukall R, Buntefuβ D, Frühling A, Rohde M, Kroppenstedt RM, Burghardt J, Lebaron P, Bernard L, Stackebrandt E (1999) Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α-Proteobacteria. Int J Syst Bacteriol 49:513–519CrossRefPubMedGoogle Scholar
  24. Satomi M, Kimura B, Mizoi M, Sato T, Fujii T (1997) Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47:832–836CrossRefPubMedGoogle Scholar
  25. Sawabe T, Oda Y, Shiomi Y, Ezura Y (1995) Alginate degradation by bacteria isolated from the gut of sea urchins and abalones. Microb Ecol 30:193–202CrossRefPubMedGoogle Scholar
  26. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  27. Sorokin DY (1995) Sulfitobacter pontiacus gen. nov., sp. nov.—a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Microbiolgy 64:295–305Google Scholar
  28. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128CrossRefGoogle Scholar
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedCentralPubMedGoogle Scholar
  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedCentralPubMedGoogle Scholar
  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Youhei Fukui
    • 1
  • Mahiko Abe
    • 2
  • Masahiro Kobayashi
    • 1
  • Masataka Satomi
    • 1
  1. 1.National Research Institute of Fisheries Science, Fisheries Research AgencyYokohamaJapan
  2. 2.National Fisheries UniversityShimonosekiJapan

Personalised recommendations