Antonie van Leeuwenhoek

, Volume 107, Issue 4, pp 1049–1056 | Cite as

Draconibacterium filum sp. nov., a new species of the genus of Draconibacterium from sediment of the east coast of the Korean Peninsula

  • Joo-Han Gwak
  • So-Jeong Kim
  • Man-Young Jung
  • Jong-Geol Kim
  • Seong Woon Roh
  • Kyung June Yim
  • Yong-Jae Lee
  • Song-Gun Kim
  • Soo-Je Park
  • Sung-Keun Rhee
Original Paper

Abstract

A Gram-stain negative, long rod shaped, facultatively anaerobic bacterium, designated strain F2T, was isolated from coastal sediment of the Korean Peninsula. Strain F2T was found to grow at 10–40 °C (optimum 30 °C), at pH 6.0–8.5 (optimum pH 7.5) and at 0.0–8.0 % (w/v) NaCl (optimum 3.0 %). Phylogenetic analysis of the 16S rRNA gene sequence showed that strain F2T is closely related to Draconibacterium orientale FH5T (with 97.9 % 16S rRNA gene similarity) of the family Prolixibacteraceae of the phylum Bacteroidetes. The major isoprenoid quinone was identified as MK-7 and the main fatty acids as iso-C15:0 (24.1 %), anteiso-C15:0 (15.4 %), C16:0 (10.7 %), iso-C17:0 3-OH (7.6 %) and iso-C16:0 3-OH (5.9 %). The major polar lipids were identified as phosphatidylethanolamine, phosphatidylinositol and four unidentified polar lipids. The genomic DNA G+C content of strain F2T was determined to be 44.7 mol% and the DNA–DNA relatedness of strain F2T with D. orientale DSM 25947T was 34.6 ± 4.3 %. Nitrate reduction capability and cell morphology of strain F2T are distinct from those of the closest relative, D. orientale DSM 25947T. Based on these properties, we propose strain F2T represents a novel species within the genus Draconibacterium, with the name Draconibacterium filum sp. nov. The type strain of D. filum is F2T (=KCTC 32486T = JCM 19986T).

Keywords

Prolixibacteraceae Draconibacterium filum Coastal sediment Polyphasic taxonomy 

Notes

Acknowledgments

This work was supported by the Korea Polar Research Institute (PP12010) of the Ministry of Land, Transportation and Maritime Affairs, Republic of Korea, the Basic Science Research Program (2012R1A1A2A10039384), and the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted from the Ministry of Trade, Industry & Energy, Republic of Korea (20132020000170).

Supplementary material

10482_2015_396_MOESM1_ESM.docx (2.4 mb)
Fig. S1. Two-dimensional TLC showing the polar lipids profile of strain F2T stained with molybdatophosphoric acid (Merck). Solvents used were as follows: first direction, chloroform/methanol/water (65:25:4, v/v/v); second direction, chloroform/methanol/acetic acid/water (80:12:15:4, v/v/v/v). PE, phosphatidylethanolamine; PI, phosphatidylinositol; L1-4, unidentified polar lipids (DOCX 2413 kb)

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefPubMedCentralPubMedGoogle Scholar
  2. Du ZJ, Wang Y, Dunlap C, Rooney AP, Chen GJ (2014) Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 64:1690–1696CrossRefPubMedGoogle Scholar
  3. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol 39:224–229Google Scholar
  4. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376CrossRefPubMedGoogle Scholar
  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution:783-791Google Scholar
  6. Fernandez-Gomez B, Richter M, Schuler M, Pinhassi J, Acinas SG, Gonzalez JM, Pedros-Alio C (2013) Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J 7(5):1026–1037CrossRefPubMedCentralPubMedGoogle Scholar
  7. Gonzalez JM, Saiz-Jimenez C (2002) A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4(11):770–773CrossRefPubMedGoogle Scholar
  8. Gordon J, McLeod JW (1928) The practical application of the direct oxidase reaction in bacteriology. J Pathol 31(2):185–190CrossRefGoogle Scholar
  9. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol 5(2):123–127CrossRefGoogle Scholar
  10. Holmes DE, Nevin KP, Woodard TL, Peacock AD, Lovley DR (2007) Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. Int J Syst Evol Microbiol 57:701–707CrossRefPubMedGoogle Scholar
  11. Huang XF, Liu YJ, Dong JD, Qu LY, Zhang YY, Wang FZ, Tian XP, Zhang S (2014) Mangrovibacterium diazotrophicum gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove sediment, and proposal of Prolixibacteraceae fam. nov. Int J Syst Evol Microbiol 64:875–881CrossRefPubMedGoogle Scholar
  12. Iino T, Mori K, Itoh T, Kudo T, Suzuki K, Ohkuma M (2014) Description of Mariniphaga anaerophila gen. nov., sp. nov., a facultatively aerobic marine bacterium isolated from tidal flat sediment, reclassification of the Draconibacteriaceae as a later heterotypic synonym of the Prolixibacteraceae and description of the family Marinifilaceae fam. nov. Int J Syst Evol Microbiol 64:3660–3667CrossRefPubMedGoogle Scholar
  13. Kim KK, Lee JS, Lee KC, Oh HM, Kim SG (2010) Pontibaca methylaminivorans gen. nov., sp. nov., a member of the family Rhodobacteraceae. Int J Syst Evol Microbiol 60:2170–2175CrossRefPubMedGoogle Scholar
  14. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(3):716–721CrossRefPubMedGoogle Scholar
  15. Kimura M (1984) The neutral theory of molecular evolution. Cambridge University Press, New YorkGoogle Scholar
  16. Komagata K, Suzuki KI (1987) Lipid and cell-wall analysis in bacterial systematics. In: Colwell RR, Grigorova R (eds) Methods in microbiology, vol 19. Academic Press, London, pp 161–207Google Scholar
  17. Krieg NR, Ludwig W, Euzéby J, Whitman WB (2010) Phylum XIV. Bacteroidetes phyl. nov. In: Krieg NR, Staley JT, Brown DR et al. (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 25–469Google Scholar
  18. Liu QQ, Li XL, Rooney AP, Du ZJ, Chen GJ (2014) Tangfeifania diversioriginum gen. nov., sp. nov., a representative of the family Draconibacteriaceae. Int J Syst Evol Microbiol 64:3473–3477CrossRefPubMedGoogle Scholar
  19. MacFaddin J (2000) Biochemical Tests for Identification of Medical Bacteria. vol 1, 3rd edn. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  20. Nei M, Kumar S, Takahashi K (1998) The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc Natl Acad Sci 95(21):12390–12397CrossRefPubMedCentralPubMedGoogle Scholar
  21. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196CrossRefPubMedCentralPubMedGoogle Scholar
  22. Qu L, Zhu F, Hong X, Gao W, Chen J, Sun X (2011) Sunxiuqinia elliptica gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from sediment in a sea cucumber farm. Int J Syst Evol Microbiol 61:2885–2889CrossRefPubMedGoogle Scholar
  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  24. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acidsGoogle Scholar
  25. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44(4):846–849Google Scholar
  26. Swindell S, Plasterer T (1997) SEQMAN. In: Swindell S (ed) Sequence Data Analysis Guidebook, vol 70. Methods In Molecular Medicine™. Springer, New York, pp 75–89. doi:10.1385/0-89603-358-9:75
  27. Takai K, Abe M, Miyazaki M, Koide O, Nunoura T, Imachi H, Inagaki F, Kobayashi T (2013) Sunxiuqinia faeciviva sp. nov., a facultatively anaerobic organoheterotroph of the Bacteroidetes isolated from deep subseafloor sediment. Int J Syst Evol Microbiol 63(5):1602–1609CrossRefPubMedGoogle Scholar
  28. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729CrossRefPubMedCentralPubMedGoogle Scholar
  29. Tittsler RP, Sandholzer LA (1936) The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31(6):575PubMedCentralPubMedGoogle Scholar
  30. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Joo-Han Gwak
    • 1
  • So-Jeong Kim
    • 1
  • Man-Young Jung
    • 1
  • Jong-Geol Kim
    • 1
  • Seong Woon Roh
    • 2
  • Kyung June Yim
    • 2
    • 3
  • Yong-Jae Lee
    • 4
  • Song-Gun Kim
    • 4
    • 5
  • Soo-Je Park
    • 3
  • Sung-Keun Rhee
    • 1
  1. 1.Department of MicrobiologyChungbuk National UniversityCheongjuRepublic of Korea
  2. 2.Korea Basic Science InstituteDaejeonRepublic of Korea
  3. 3.Department of BiologyJeju National UniversityJejuRepublic of Korea
  4. 4.Microbial Resource Center/Korean Collection for Type Cultures (KCTC)Korea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
  5. 5.University of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations