Antonie van Leeuwenhoek

, Volume 107, Issue 4, pp 971–977 | Cite as

Geosporobacter ferrireducens sp. nov., an anaerobic iron-reducing bacterium isolated from an oil-contaminated site

  • Heeji Hong
  • So-Jeong Kim
  • Ui-Gi Min
  • Yong-Jae Lee
  • Song-Gun Kim
  • Man-Young Jung
  • Yong-Seok Seo
  • Sung-Keun Rhee
Original Paper


In this study, an alkaliphilic and heterotrophic iron-reducing bacterial strain, IRF9T, was isolated from an oil-contaminated soil in the Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain IRF9T belongs to the genus Geosporobacter in the family Clostridiaceae and is most closely related to Geosporobacter subterraneus VNs68T (96.9 % sequence similarity). Cells of strain IRF9T were observed to be straight or curved rod-shaped, motile and Gram-negative. Optimal growth of strain IRF9T was observed at pH 9.0–9.5 and 40 °C. The strain was found to grow within pH and temperature ranges of 6.5–10.0 and 25–45 °C, respectively. NaCl was not required for growth. Fe(III), but not sulfate, thiosulfate or elemental sulfur can be used by strain IRF9T as an electron acceptor. A limited number of carbohydrates and amino acids, including d-glucose, d-fructose, d-mannitol, d-ribose and l-arginine, support growth of strain IRF9T. The main fatty acids (>10 %) of strain IRF9T were identified as C14:0 (18.4 %), C16:1 cis9 (13.6 %), C16:0 (12.4 %) and C16:0 dimethyl acetal (17.7 %). Major respiratory quinone was identified as menaquinone MK-5 (V-H2). The main polar lipids were found to be phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The DNA G+C content of strain IRF9T was determined to be 37.2 mol%, which is lower than that of G. subterraneus VNs68T (42.2 mol%). Based on phenotypic, chemotaxonomic, and phylogenetic studies, we conclude that strain IRF9T (=JCM 19987T = KCTC 15395T) represents a new species of the genus Geosporobacter, for which we propose the name Geosporobacter ferrireducens sp. nov.


Iron-reducing bacterium Oil-contaminated soil Geosporobacter ferrireducens 



This work was supported by Mid-career Researcher Program (NRF-2013R1A2A2A05006754) through a National Research Foundation (NRF) grant, funded by the Ministry of Education, Science, and Technology (MEST), the Energy Efficiency & Resources Core Technology Program (20132020000170) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted from the Ministry of Trade, Industry & Energy, and a Grant (NIBR No. 2012-02-057) from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea.

Supplementary material

10482_2015_389_MOESM1_ESM.pdf (112 kb)
Fig. S1. Two-dimensional TLC showing the polar lipid profiles of strain IRF9T and G. subterraneus JCM 14037T stained with molybdatophosphoric acid (Merck). Solvents used were as follows: first direction, chloroform/methanol/water (65:25:4 by vol.); second direction, chloroform/methanol/acetic acid/water (80:12:15:4 by vol.). (a), strain IRF9T; (b), G. subterraneus JCM 14037T. PE, phosphatidylethanolamine; DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; AL, unidentified aminolipid; PL, unidentified phospholipid; L, unidentified polar lipid; L1-2, unidentified polar lipids.Supplementary material 1 (PDF 112 kb)


  1. Brill JA, Wiegel J (1997) Differentiation between spore-forming and asporogenic bacteria using a PCR and Southern hybridization based method. J Microbiol Methods 31:29–36CrossRefGoogle Scholar
  2. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  3. Gonzalez JM, Saiz-Jimenez C (2002) A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773CrossRefPubMedGoogle Scholar
  4. Harold J (2002) Microbiological applications: a laboratory manual in general microbiology. McGraw-Hill Higher Education, BostonGoogle Scholar
  5. Johnson JL, Francis BS (1975) Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species. J Gen Microbiol 88:229–244CrossRefPubMedGoogle Scholar
  6. Kim KK, Lee J-S, Lee KC, Oh H-M, Kim S-G (2010) Pontibaca methylaminivorans gen. nov., sp. nov., a member of the family Rhodobacteraceae. Int J Syst Evol Microbiol 60:2170–2175CrossRefPubMedGoogle Scholar
  7. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  8. Kim SJ, Park SJ, Cha IT, Min D, Kim JS, Chung WH, Chae JC, Jeon CO, Rhee SK (2014) Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis. Environ Microbiol 16:189–204CrossRefPubMedGoogle Scholar
  9. Kimura M (1984) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  10. Klouche N, Fardeau M-L, Lascourrèges J-F, Cayol J-L, Hacene H, Thomas P, Magot M (2007) Geosporobacter subterraneus gen. nov., sp. nov., a spore-forming bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 57:1757–1761CrossRefPubMedGoogle Scholar
  11. Komagata K, Suzuki K-I (1988) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207CrossRefGoogle Scholar
  12. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  13. Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689PubMedCentralPubMedGoogle Scholar
  14. Ludwig W, Schleifer KH, Whitman WB (2009) Revised road map to the phylum Firmicutes. In: Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Dordrecht, Heidelberg, London, New York, pp 1–13Google Scholar
  15. MIDI (2001) Sherlock microbial identification system. MIDI Inc, NewarkGoogle Scholar
  16. Nei M, Kumar S, Takahashi K (1998) The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc Natl Acad Sci USA 95:12390–12397CrossRefPubMedCentralPubMedGoogle Scholar
  17. Ogg CD, Patel BK (2009) Thermotalea metallivorans gen. nov., sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia aquifer. Int J Syst Evol Microbiol 59:964–971CrossRefPubMedGoogle Scholar
  18. Rainey F (2009) Class II. Clostridia class nov. In: Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Dordrecht, Heidelberg, London, New York, p 736Google Scholar
  19. Ryu E (1938) On the gram-differentiation of bacteria by the simplest method. J Jpn Soc Vet Sci 17:58–63CrossRefGoogle Scholar
  20. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  21. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16Google Scholar
  22. Schaeffer AB, Fulton MD (1933) A simplified method of staining endospores. Science 77:194CrossRefPubMedGoogle Scholar
  23. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedCentralPubMedGoogle Scholar
  25. Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek J 30:225–238CrossRefGoogle Scholar
  26. Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137:163–167CrossRefGoogle Scholar
  27. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedCentralPubMedGoogle Scholar
  28. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper H, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, New York, pp 3352–3378CrossRefGoogle Scholar
  29. Wiegel J (2009) Family I. Clostridiaceae. In: Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Dordrecht, Heidelberg, London, New York, pp 736–738Google Scholar
  30. Wiegel J, Tanner R, Rainey F (2006) An introduction to the family Clostridiaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, US, pp 654–678CrossRefGoogle Scholar
  31. Zhang Y-Z, Fang M-X, Zhang W-W, Li T-T, Wu M, Zhu X-F (2013) Salimesophilobacter vulgaris gen. nov., sp. nov., an anaerobic bacterium isolated from paper-mill wastewater. Int J Syst Evol Microbiol 63:1317–1322CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Heeji Hong
    • 1
  • So-Jeong Kim
    • 1
  • Ui-Gi Min
    • 1
  • Yong-Jae Lee
    • 2
  • Song-Gun Kim
    • 2
    • 3
  • Man-Young Jung
    • 1
  • Yong-Seok Seo
    • 4
  • Sung-Keun Rhee
    • 1
  1. 1.Department of MicrobiologyChungbuk National UniversityCheongjuRepublic of Korea
  2. 2.Microbial Resources Center/KCTCKorea Research Institute of Bioscience and BiotechnologyTaejonRepublic of Korea
  3. 3.University of Science and TechnologyTaejonRepublic of Korea
  4. 4.Department of Earth and Environmental SciencesChungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations