Antonie van Leeuwenhoek

, Volume 107, Issue 4, pp 951–959 | Cite as

Pedobacter lotistagni sp. nov. isolated from lotus pond water

  • Hina Singh
  • Juan Du
  • Hien T. T. Ngo
  • Ki-Young Kim
  • Tae-Hoo Yi
Original Paper

Abstract

A light-yellow coloured, Gram-stain negative, rod-shaped, aerobic, non-motile bacterium, designated THG-DN6.8T, was isolated from a lotus pond near Donghaksa temple in Daejeon, South Korea. The strain was found to grow well on nutrient agar, optimally at pH 6.0–7.5, at temperature 25–28 °C and in the presence of 0.5 % NaCl. Based on 16S rRNA gene sequence analysis, strain THG-DN6.8T was found to share the highest sequence similarity with Pedobacter koreensis KCTC 12536T, followed by Pedobacter glacialis CCTCC AB 2012941T, Pedobacter kyungheensis KACC 16221T, Pedobacter caeni LMG 22862T, Pedobacter insulae KCTC 12820T and Pedobacter boryungensis KCTC 23344 T. The DNA G+C content was determined to be 36.8 mol%. In DNA–DNA hybridization tests, the DNA relatedness between strain THG-DN6.8T and its closest phylogenetic neighbour P. koreensis was found to be below 10 %. The predominant isoprenoid quinone was identified as menaquinone MK-7 and the major polar lipid as phosphatidylethanolamine. The major fatty acids of strain THG-DN6.8T were identified as iso-C15:0, C16:0, C18:0 and C16:1ω6c and/or C16:1ω7c (summed feature 3). On the basis of the phenotypic characteristics, genotypic analysis and chemotaxonomic characteristics, strain THG-DN6.8T is considered to represent a novel species of the genus Pedobacter, for which the name Pedobacter lotistagni sp. nov. is proposed. The type strain is THG-DN6.8T (= KCTC 42229T = JCM 30354T).

Keywords

Pedobacter lotistagni Gram-staining-negative Menaquinone MK-7 16S rRNA 

Notes

Acknowledgments

This work was conducted under the industrial infrastructure program (No. N0000888) for fundamental technologies which is funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Supplementary material

10482_2015_387_MOESM1_ESM.docx (462 kb)
Supplementary material 1 (DOCX 462 kb)

References

  1. Chung J, Kang YJ, Jahng KY (2014) Pedobacter pituitosus sp. nov. isolated from waterfall. Int J Syst Evol Microbiol 64:3838–3843CrossRefGoogle Scholar
  2. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354PubMedCentralPubMedGoogle Scholar
  3. Derichs J, Kampfer P, Lipski A (2014) Pedobacter nutrimenti sp. nov. isolated from chilled food. Int J Syst Evol Microbiol 64:1310–1316CrossRefPubMedGoogle Scholar
  4. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229Google Scholar
  5. Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. FEMS Microbiol Ecol 8:87–91CrossRefGoogle Scholar
  6. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  8. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  9. Gillis M, De Ley J, De Cleene M (1970) The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 12:143–153CrossRefPubMedGoogle Scholar
  10. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  11. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high–performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469CrossRefGoogle Scholar
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  13. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Kook M, Park Y, Yi TH (2014) Pedobacter jejuensis sp. nov., isolated from soil of a pine grove, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 64:1789–1794CrossRefPubMedGoogle Scholar
  15. Lee HG, Kim SG, Im WT, Oh HM, Lee ST (2009) Pedobacter composti sp. nov., isolated from compost. Int J Syst Evol Microbiol 59:345–349CrossRefPubMedGoogle Scholar
  16. Luo X, Wang Z, Dai J, Zhang L, Li J, Tang Y, Wang Y, Fang C (2010) Pedobacter glucosidilyticus sp. nov., isolated from dry riverbed soil. Int J Syst Evol Microbiol 60:229–233CrossRefPubMedGoogle Scholar
  17. Margesin R, Sproer C, Schumann P, Schinner F (2003) Pedobacter cryoconitis sp. nov. a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 53:1291–1296CrossRefPubMedGoogle Scholar
  18. McConaughy BL, Laird CD, McCarthy BJ (1969) Nucleic acid reassociation in formamide. Biochemistry 8:3289–3295CrossRefPubMedGoogle Scholar
  19. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high–performance liquid chromatography. Int J Syst Bacteriol 39:159–167Google Scholar
  20. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  21. Moore DD, Dowhan D (1995) Preparation and Analysis of DNA. In: Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current Protocols in Molecular Biology, Wiley, New York, pp 2–11Google Scholar
  22. Oh HW, Kim BC, Park DS, Jeong WJ, Kim H, Lee KH, Kim SU (2013) Pedobacter luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol 63:1304–1310CrossRefPubMedGoogle Scholar
  23. Qui X, Qu Z, Jiang F, Ren L, Chang X, Kan W, Fang C, Peng F (2014) Pedobacter huanghensis sp. nov. and Pedobacter glacialis sp. nov., isolated from Arctic glacier foreland. Int J Syst Evol Microbiol 64:2431–2436CrossRefGoogle Scholar
  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  25. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, NewarkGoogle Scholar
  26. Skerman VBD (1967) A guide to the identification of the genera of bacteria, 2nd edn. Williams and Wilkins, BaltimoreGoogle Scholar
  27. Stabili L, Gravili C, Tredici SM, Piraino S, Talà A, Boero F, Alifano P (2008) Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol 56:625–636CrossRefPubMedGoogle Scholar
  28. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  29. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K, Joubert JJ (1998) Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177CrossRefPubMedGoogle Scholar
  30. Tamaoka J, Katayama-Fujiruma A, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacieriol 54:31–36CrossRefGoogle Scholar
  31. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5.2: molecular evolutionary genetics analysis using maximum likelihood evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedCentralPubMedGoogle Scholar
  32. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedCentralPubMedGoogle Scholar
  33. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedCentralPubMedGoogle Scholar
  34. Yoon MH, Ten LN, Im WT, Lee ST (2007) Pedobacter panaciterrae sp. nov., isolated from soil in South Korea. Int J Syst Evol Microbiol 57:381–386CrossRefPubMedGoogle Scholar
  35. Zhou Z, Jiang F, Wang S, Peng F, Dai J, Li W, Fang C (2012) Pedobacter arcticus sp. nov., a facultative psychrophile isolated from Arctic soil, and emended descriptions of the genus Pedobacter, Pedobacter heparinus, Pedobacter daechungensis, Pedobacter terricola, Pedobacter glucosidilyticus and Pedobacter lentus. Int J Syst Evol Microbiol 62:1963–1969CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hina Singh
    • 1
  • Juan Du
    • 1
  • Hien T. T. Ngo
    • 1
  • Ki-Young Kim
    • 2
  • Tae-Hoo Yi
    • 1
  1. 1.Department of Oriental Medicinal Material & Processing, College of Life ScienceKyung Hee University Global CampusYongin-siRepublic of Korea
  2. 2.Department of Genetic Engineering, College of Life ScienceKyung Hee University Global CampusYongin-siRepublic of Korea

Personalised recommendations