Skip to main content

Advertisement

Log in

Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Ultramafic soils are characterized by high levels of metals, and have been studied because of their geochemistry and its relation to their biological component. This study evaluated soil microbiological functioning (SMF), richness, diversity, and structure of bacterial communities from two ultramafic soils and from a non-ultramafic soil in the Brazilian Cerrado, a tropical savanna. SMF was represented according to simultaneous analysis of microbial biomass C (MBC) and activities of the enzymes β-glucosidase, acid phosphomonoesterase and arylsulfatase, linked to the C, P and S cycles. Bacterial community diversity and structure were studied by sequencing of 16S rRNA gene clone libraries. MBC and enzyme activities were not affected by high Ni contents. Changes in SMF were more related to the organic matter content of soils (SOM) than to their available Ni. Phylogeny-based methods detected qualitative and quantitative differences in pairwise comparisons of bacterial community structures of the three sites. However, no correlations between community structure differences and SOM or SMF were detected. We believe this work presents benchmark information on SMF, diversity, and structure of bacterial communities for a unique type of environment within the Cerrado biome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrade LRM, Aquino FG, Miranda ZJG, Echevarria G, Becquer T, Nascimento CTC, Viana RM (2011) Assessment of Ni levels and plant species diversity in ultramafic soils under Ni mining in Barro Alto (GO)—Brazil. In: 7th international conference on serpentine ecology, 2011, Coimbra, Portugal, p 89

  • Aquino FG, Viana RM, Miranda ZJG, Andrade LRM (2011a) Floristic composition in the ultramafic soils in Central Brazil. In: 7th international conference on serpentine ecology, 2011, Coimbra, Portugal, p 90

  • Aquino FG, Viana RM, Miranda ZJG, Andrade LRM (2011b) Richness, abundance and species composition in different areas of the ultramafic soils in Central Brazil. In: 7th international conference on serpentine ecology, 2011, Coimbra, Portugal, p 91

  • Araujo JF, de Castro AP, Costa MMC, Togawa RC, Júnior GJP, Quirino BF, Bustamante MMC, Williamson L, Handelsman J, Krüger RH (2012) Characterization of soil bacterial assemblies in Brazilian savanna-like vegetation reveals Acidobacteria dominance. Microb Ecol 64(3):760–770

    Article  CAS  PubMed  Google Scholar 

  • Brookes PC, Mcgrath SP (1984) Effects of metal toxicity on the size of the soil microbial biomass. J Soil Sci 35:341–346

    Article  CAS  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation: a multi-disciplinary approach. Dioscorides, Portland, OR

    Google Scholar 

  • Bunge J (2011) Estimating the number of species with CatchAll. Pac Symp Biocomput 11:121–130

    Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen T-J (2004) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  • Chou H, Holmes M (2001) DNA sequence quality trimming and vector removal. Bioinformatics 17:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(database issue):D141–D145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daghino S, Murat C, Sizzano E, Girlanda M, Perotto S (2012) Fungal diversity is not determined by mineral and chemical differences in serpentine substrates. PLoS ONE 7:e44233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dawson JJC, Smith P (2007) Carbon losses from soil and its consequences for land-use management. Sci Total Environ 382:165–190

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho Mendes I, Fernandes MF, Chaer GM, dos Reis Junior FB (2012) Biological functioning of Brazilian Cerrado soils under different vegetation types. Plant Soil 359:183–195

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11

    Article  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20

    Google Scholar 

  • Fliessbach A, Martens R, Reber HH (1994) Soil microbial biomass and microbial activity in soils treated with heavy-metal contaminated sewage-sludge. Soil Biol Biochem 26:1201–1205

    Article  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (1996) Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem 28:55–63

    Article  CAS  Google Scholar 

  • Gil-Sotres F, Trasar-Cepeda C, Leirós MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887

    Article  CAS  Google Scholar 

  • Graffelman J (2013) calibrate: calibration of scatter plot and biplot axes. R package version 1.7.2. http://CRAN.R-project.org/package=calibrate

  • Griffiths BS, DiazRavina M, Ritz K, McNicol JW, Ebblewhite N, Baath E (1997) Community DNA hybridisation and %G+C profiles of microbial communities from heavy metal polluted soils. FEMS Microbiol Ecol 24:103–112

    Article  CAS  Google Scholar 

  • Hattori H (1992) Influence of heavy metals on soil microbial activities. Soil Sci Plant Nutr 38:93–100

    Article  CAS  Google Scholar 

  • Herrera A, Hery M, Stach JEM, Jaffre T, Normand P, Navarro E (2007) Species richness and phylogenetic diversity comparisons of soil microbial communities affected by nickel-mining and revegetation efforts in New Caledonia. Eur J Soil Biol 43:130–139

    Article  CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Prentice Hall, New York

    Google Scholar 

  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kandeler E, Tscherko D, Bruce KD, Stemmer M, Hobbs PJ, Bardgett RD, Amelung W (2000) Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol Fertil Soils 32:390–400

    Article  CAS  Google Scholar 

  • Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508

    CAS  PubMed  Google Scholar 

  • Kozdrój J, van Elsas JD (2001) Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J Microbiol Methods 43:197–212

    Article  PubMed  Google Scholar 

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Lin C, Coleman NT (1965) The measurement of exchangeable aluminium in soil and clays. Soil Sci Soc Am Proc 29:374–378

  • Lindsay WL, Norvell WA (1978) Development of a Dtpa soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009a) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719–725

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009b) Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater 166:1154–1161

    Article  CAS  PubMed  Google Scholar 

  • McCune B, Mefford MJ (1999) Multivariate analysis of ecological data. MjM Software Design, Gleneden Beach, Oregon

    Google Scholar 

  • Mengoni A, Barzanti R, Gonnelli C, Gabbrielli R, Bazzicalupo M (2001) Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ Microbiol 3:691–698

    Article  CAS  PubMed  Google Scholar 

  • Mengoni A, Grassi E, Barzanti R, Biondi EG, Gonnelli C, Kim CK, Bazzicalupo M (2004) Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickel-hyperaccumulator plant Alyssum bertolonii. Microb Ecol 48(2):209–217

  • Mirete S, de Figueras CG, González-Pastor JE (2007) Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl Environ Microbiol 73(19):6001–6011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter. In: Sparks DL, Paga AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Summer ME (eds) Methods of soil analysis: chemical methods. Part 3. Soil Science Society of America, Madison, pp 961–1010

    Google Scholar 

  • Niklinska M, Chodak M, Laskowski R (2006) Pollution-induced community tolerance of microorganisms from forest soil organic layers polluted with Zn or Cu. Appl Soil Ecol 32:265–272

    Article  Google Scholar 

  • Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J (1999) Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119:239–246

    Article  Google Scholar 

  • Oline DK (2006) Phylogenetic comparisons of bacterial communities from serpentine and nonserpentine soils. Appl Environ Microbiol 72:6965–6971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oliveira-Filho AT, Ratter JA (2002) Vegetation physiognomies and woody flora of the Cerrado Biome. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil—ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 91–120

    Google Scholar 

  • Peixoto RS, Chaer GM, Franco N, Reis Junior FB, Mendes IC, Rosado AS (2010) A decade of land use contributes to changes in the chemistry, biochemistry and bacterial community structures of soils in the Cerrado. Antonie Van Leeuwenhoek 98(3):403–413

    Article  CAS  PubMed  Google Scholar 

  • Pennanen T (2001) Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH—a summary of the use of phospholipid fatty acids, Biolog (R) and H-3-thymidine incorporation methods in field studies. Geoderma 100:91–126

    Article  CAS  Google Scholar 

  • Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23

    Article  CAS  PubMed  Google Scholar 

  • Quirino BF, Pappas GJ, Tagliaferro AC, Collevatti RG, Neto EL, Da Silva MRSS, Bustamante MMC, Krüger RH (2009) Molecular phylogenetic diversity of bacteria associated with soil of the savanna-like Cerrado vegetation. Microbiol Res 164:59–70

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rajkumar M, Prasad MNV, Freitas H, Ae N (2009) Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit Rev Biotech 29:120–130

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goias state, Brazil. Plant Soil 293:107–119

    Article  CAS  Google Scholar 

  • Renella G, Mench M, van der Lelie D, Pietramellara G, Ascher J, Ceccherini MT, Landi L, Nannipieri P (2004) Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils. Soil Biol Biochem 36:443–451

    Article  CAS  Google Scholar 

  • Renella G, Chaudri AM, Falloon CM, Landi L, Nannipieri P, Brookes PC (2007) Effects of Cd, Zn, or both on soil microbial biomass and activity in a clay loam soil. Biol Fertil Soils 43:751–758

    Article  CAS  Google Scholar 

  • Ribeiro JF, Walter BMT (1998) Fitofisionomias do bioma Cerrado. In: Sano SM, Almeida SP (eds) Cerrado: ambiente e flora. Embrapa-CPAC, Planaltina, Brazil, pp 87–166

    Google Scholar 

  • Sambrook JJ, Russel DDW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sandaa R, Torsvik V, Enger O, Daae FL, Castberg T, Hahn D (1999) Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30:237–251

    Article  CAS  PubMed  Google Scholar 

  • Schipper L, Lee W (2004) Microbial biomass, respiration and diversity in ultramafic soils of West Dome, New Zealand. Plant Soil 262:151–158

    Article  CAS  Google Scholar 

  • Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the Effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silva LJ (2010) laercio: Duncan test, Tukey test and Scott-Knott test. R package version 1.0-1. http://CRAN.R-project.org/package=laercio

  • Sims JT (1989) Comparison of Mehlich 1 and Mehlich 3 extractants for P, K, Ca, Mg, Cu and Zn in Atlantic Coastal Plain Soils. Commun Soil Sci Plan 20:1707–1726

    Article  CAS  Google Scholar 

  • Soetaert K (2014) shape: functions for plotting graphical shapes, colors. R package version 1.4.1. http://CRAN.R-project.org/package=shape

  • Stark CH, Condron LM, O’Callaghan M, Stewart A, Di HJ (2008) Differences in soil enzyme activities, microbial community structure and short-term nitrogen mineralisation resulting from farm management history and organic matter amendments. Soil Biol Biochem 40:1352–1363

    Article  CAS  Google Scholar 

  • Stefanowicz AM, Niklinska M, Laskowski R (2008) Metals affect soil bacterial and fungal diversity differently. Environ Toxicol Chem 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • Tabatabai MA (1970) Soil enzymes. In: Weaver RW, Angle S, Bottomley PJ et al (eds) Methods of soil analysis. Part 2: microbiological and biochemical properties. Soil Science Society of America, Madison, pp 775–833

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas GW (1982) Exchange cations. Method 9–3.1. In: Page AL (ed) Methods of soil analysis. Part 2. Chemical and Microbiological Properties, 2nd Ed., ASA, SSA, Madison, WI. pp 159–165

  • Vance ED, Brookes PC, Jenkinson DS (1987) Microbial biomass measurements in forest soils—the use of the chloroform fumigation incubation method in strongly acid soils. Soil Biol Biochem 19:697–702

    Article  CAS  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    Article  CAS  Google Scholar 

  • Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67:75–81

    Article  CAS  PubMed  Google Scholar 

  • Yao H, He Z, Wilson M, Campbell C (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb Ecol 40:223–237

    CAS  PubMed  Google Scholar 

  • Zhou J, Xia B, Treves DS, Wu L-Y, Marsh TL, O’Neill RV, Palumbo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Clodoaldo A. de Sousa, Lucas F.L.S. Rolim, Franciele Schlemmer, Leandro M. de Souza, and Milene R. Ribeiro, for their assistance during this study. We thank Fabiana de Gois Aquino for kindly providing images of the samples sites. We also thank Anglo American and their team at the Barro Alto plant for their support. This work was partially financed by, Embrapa Macroprograma 2—Grant# 02.07.01.007.00.00, Embrapa Macroprograma 3—Grant# 03.09.06.016.00.00, and the CNPq (National Council for Scientific and Technological Development) REPENSA call (562433/2010-4).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pessoa-Filho.

Electronic supplementary material

Below are the links to the electronic supplementary materials.

Online resource 1 (PDF 383 kb)

Images of the two ultramafic sites selected for soil sampling. (A) Site 1, with a Campo Sujo physiognomy; (B) Site 2, with a Cerrado Ralo physiognomy. (Photo credit: Fabiana de Gois Aquino)

Online resource 2 (EPS 3,059 kb)

Neighbor-joining tree based on 16S rRNA gene sequences from Site 2 clones (in boldface) and their closest hits from RDP (with their corresponding accession numbers in parenthesis). Bootstrap values above 50 are shown. The tree was rooted with Methanocaldococcus jannaschii as an outgroup

Online resource 3 (EPS 3,061 kb)

Neighbor-joining tree based on 16S rRNA gene sequences from Cerrado clones (in boldface) and their closest hits from RDP (with their corresponding accession numbers in parenthesis). Bootstrap values above 50 are shown. The tree was rooted with Methanocaldococcus jannaschii as an outgroup

Online resource 4 (EPS 3,929 kb)

Rarefaction curves from Sites 1, 2 and Cerrado. Error bars represent the 95 % CI. Curves with different symbols represent clustering of sequences into OTUs identified by different dissimilarity cutoffs shown in the legend: unique (all unique sequences), 0.03 (3 % dissimilarity), 0.1 (10 % dissimilarity), 0.2 (20 % dissimilarity)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pessoa-Filho, M., Barreto, C.C., dos Reis Junior, F.B. et al. Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna. Antonie van Leeuwenhoek 107, 935–949 (2015). https://doi.org/10.1007/s10482-015-0386-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0386-6

Keywords

Navigation