Antonie van Leeuwenhoek

, Volume 107, Issue 3, pp 723–729 | Cite as

Colwellia arctica sp. nov., isolated from Arctic marine sediment

Original Paper


Strain 435T, a catalase- and oxidase-positive, beige-pigmented, facultatively anaerobic and Gram-stain-negative marine bacterium, was isolated from marine sediment collected in the Arctic (8°21′629′′E 72°8′827′′N). The cells of the type strain are short- to curve-rods and able to grow at 4–25 °C, pH 6.0–9.0 and in the presence of 0.5–6.0 % (w/v) NaCl. It can reduce nitrate to nitrite. The predominant isoprenoid quinone was identified as Q-8 and the polar lipids are comprised of phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content is 38.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 435T belongs to the genus Colwellia. Strain 435T was found to exhibit 92.1–95.6 % 16S rRNA gene sequence similarities with other species of the genus Colwellia. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness indicated that strain 435T can be considered to represent a novel species, Colwellia arctica sp. nov., of the genus Colwellia. The type strain is 435T (=CICC 10860T = ATCC BAA-2609T).


Colwellia arctica sp. nov. 16S rRNA gene Polyphasic taxonomy Marine sediment 



This work was financially supported by the Chinese Polar Environment Comprehensive Investigation and Assessment Program (CHINARE2012-03-05, CHINARE2013-03-05), Public Science and Technology Research Funds Projects of Ocean (201005032-2) and the National Natural Science Foundation of China (31370057).

Supplementary material

10482_2014_366_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)
10482_2014_366_MOESM2_ESM.docx (53 kb)
Supplementary material 2 (DOCX 53 kb)


  1. Bowman JP (2000) Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868PubMedGoogle Scholar
  2. Bowman JP, Gosink JJ, Mccammon SA, Lewis TE, Nichols DS, Nichols PD, Skerratt JH, Staley JT, Mcmeekin TA (1998) Colwellia demingiae sp.nov., Colwellia hornerae sp.nov., Colwellia rossensis and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6ω3). Int J Syst Bacteriol 48:1171–1180CrossRefGoogle Scholar
  3. Choi EJ, Kwon HC, Kon HY, Kim YS, Yang HO (2010) Colwellia asteriadis sp. nov., a marine bacterium isolated from the starfish Asterias amurensis. Int J Syst Evol Microbiol 60:1952–1957CrossRefPubMedGoogle Scholar
  4. CLSI (2012) Performance standards for antimicrobial susceptibility testing; 22nd informational supplement M100-S22. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  5. D’Aoust JY, Kushner DJ (1972) Vibrio psychroerythrus sp. n.: classification of the psychrophilic marine bacterium, NRC 1004. J Bacteriol 111:340–342PubMedCentralPubMedGoogle Scholar
  6. Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT (1988) Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 10:152–160CrossRefGoogle Scholar
  7. Du ZJ, Wang Y, Dunlap C, Rooney AP, Chen GJ (2014) Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 64:1690–1696CrossRefPubMedGoogle Scholar
  8. Ivanova EP, Flavier S, Christen R (2004) Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54:1773–1788CrossRefPubMedGoogle Scholar
  9. Jung SY, Oh TK, Yoon JH (2006) Colwellia aestuarii sp. nov., isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol 56:33–37CrossRefPubMedGoogle Scholar
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence data- base with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  11. Kim YO, Park S, Nam BH, Jung YT, Kim DG, Yoon JH (2014) Colwellia meonggei sp. nov., a novel gammaproteobacterium isolated from sea squirt Halocynthia roretzi. Antonie Van Leeuwenhoek 104:1021–1027CrossRefGoogle Scholar
  12. Liu QQ, Wang Y, Li J, Du ZJ, Chen GJ (2014a) Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 64:2204–2209CrossRefPubMedGoogle Scholar
  13. Liu Y, Liu LZ, Zhong ZP, Zhou YG, Liu Y, Liu ZP (2014b) Colwellia aquaemaris sp. nov., isolated from the Cynoglossus semilaevis culture tank in a recirculating mariculture system. Int J Syst Evol Microbiol 64:3926–3930Google Scholar
  14. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  15. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. MIDI Inc, NewarkGoogle Scholar
  16. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general, molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  17. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  18. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128CrossRefGoogle Scholar
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedCentralPubMedGoogle Scholar
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedCentralPubMedGoogle Scholar
  21. Tindall BJ (1990a) Acomparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130CrossRefGoogle Scholar
  22. Tindall BJ (1990b) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Letts 66:199–202CrossRefGoogle Scholar
  23. Yu Y, Li HR, Zeng YX (2011) Colwellia chukchiensis sp. nov., a psychrotolerant bacterium isolated from the Arctic Ocean. Int J Syst Evol Microbiol 61:850–853CrossRefPubMedGoogle Scholar
  24. Zhang DC, Yu Y, Xin YH, Liu HC, Zhou PJ, Zhou YG (2008) Colwellia polaris sp. nov., a psychrotolerant bacterium isolated from Arctic sea ice. Int J Syst Evol Microbiol 58:1931–1934CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.College of Marine ScienceShandong University at WeihaiWeihaiChina
  2. 2.Key Laboratory of Marine Bioactive Substances, First Institute of OceanographySOAQingdaoChina
  3. 3.State Key Laboratory of Microbial TechnologyShandong UniversityJinanChina

Personalised recommendations