Antonie van Leeuwenhoek

, Volume 107, Issue 2, pp 597–611 | Cite as

The diversity and extracellular enzymatic activities of yeasts isolated from water tanks of Vriesea minarum, an endangered bromeliad species in Brazil, and the description of Occultifur brasiliensis f.a., sp. nov.

  • Fátima C. O. Gomes
  • Silvana V. B. Safar
  • Andrea R. Marques
  • Adriana O. Medeiros
  • Ana Raquel O. Santos
  • Cláudia Carvalho
  • Marc-André Lachance
  • José Paulo Sampaio
  • Carlos A. Rosa
Original Paper

Abstract

The diversity of yeast species collected from the bromeliad tanks of Vriesea minarum, an endangered bromeliad species, and their ability to produce extracellular enzymes were studied. Water samples were collected from 30 tanks of bromeliads living in a rupestrian field site located at Serrada Piedade, Minas Gerais state, Brazil, during both the dry and rainy seasons. Thirty-six species were isolated, representing 22 basidiomycetous and 14 ascomycetous species. Occultifur sp., Cryptococcus podzolicus and Cryptococcus sp. 1 were the prevalent basidiomycetous species. The yeast-like fungus from the order Myriangiales, Candida silvae and Aureobasidium pullulans were the most frequent ascomycetous species. The diversity of the yeast communities obtained between seasons was not significantly different, but the yeast composition per bromeliad was different between seasons. These results suggest that there is significant spatial heterogeneity in the composition of populations of the yeast communities within bromeliad tanks, independent of the season. Among the 352 yeast isolates tested, 282 showed at least one enzymatic activity. Protease activity was the most widely expressed extracellular enzymatic activity, followed by xylanase, amylase, pectinase and cellulase activities. These enzymes may increase the carbon and nitrogen availability for the microbial food web in the bromeliad tank of V. minarum. Sequence analyses revealed the existence of 10 new species, indicating that bromeliad tanks are important sources of new yeasts. The novel species Occultifur brasiliensis, f.a., sp. nov., is proposed to accommodate the most frequently isolated yeast associated with V. minarum. The type strain of O. brasiliensis, f.a., sp. nov. is UFMG-CM-Y375T (= CBS 12687T). The Mycobank number is MB 809816.

Keywords

Yeast diversity Bromeliad-tank Vriesea minarum Extracellular enzymes Occultifurbrasiliensis f. a., sp. nov. 

Notes

Acknowledgments

This work was funded by the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq, process 560715/2010-2), Fundação do Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG, awarded to CAR and FCOG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, awarded to CAR, process CAPES/FCT 326/13), the Financiadora de Estudos e Projetos (FINEP, process 2084/07), the Natural Science and Engineering Research Council of Canada (M.A.L.) and by FCT (Portugal) through projects PTDC/BIA-EVF/118618/2010 (JPS) and Pest-OE/BIA/UI0457/2011 (JPS, CC).

References

  1. Alves RJV, Kolbek J (2010) Can campo rupestre vegetation be floristically delimited based on vascular plant genera? Plant Ecol 207:67–79CrossRefGoogle Scholar
  2. Araújo FV, SoaresCA Hagler AN, Mendonça-Hagler LC (1995) Ascomycetous yeast communities of marine invertebrates in a southeast Brazilian mangrove ecosystem. Antonie Van Leeuwenhoek 68:91–99PubMedCrossRefGoogle Scholar
  3. Araújo FV, Medeiros RJ, Mendonça-Hagler LC, Hagler AN (1998) A preliminary note on yeast communities of bromeliad-tank waters of Rio de Janeiro, Brazil. Rev Microbiol 29:118–121Google Scholar
  4. Araújo FV, Rosa CA, Freitas LFD, Lachance MA, Vaughan-Martini A, Mendonça-Hagler LC, Hagler AN (2012) Kazachstania bromeliacearum sp. nov., a yeast species from water tanks of bromeliads. Int J Syst Evol Microbiol 62:1002–1006PubMedCrossRefGoogle Scholar
  5. Benites VM, Schaefer CER, Simas FNB, Santos HG (2007) Soil associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Rev Bras Bot 30:569–577CrossRefGoogle Scholar
  6. Boekhout T, Theelen B, Houbraken J, Robert V, Scorzetti G, Gafni A, Gerson U, Sztejnberg A (2003) Novel anamorphic mite-associated fungi belonging to the Ustilaginomycetes: Meira geulakonigii gen. nov., sp. nov., Meira argovae sp. nov. and Acaromyces ingoldii gen. nov., sp. nov. Int J Syst Evol Microbiol 53:1655–1664PubMedCrossRefGoogle Scholar
  7. Brandão LR, Libkind D, Vaz ABM, Santo LC, Moliné M, de García V, van Broock M, Rosa CA (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13PubMedCrossRefGoogle Scholar
  8. Brizzio S, Turchetti B, de García V, Libkind D, Buzzini P, van Broock M (2007) Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525PubMedCrossRefGoogle Scholar
  9. de García V, Brizzio S, Libkind D, Buzzini P, van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial melt water rivers in Patagonia, Argentina. FEMS Microbiol Ecol 59:331–341PubMedCrossRefGoogle Scholar
  10. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1795PubMedCentralPubMedCrossRefGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 36:783–791CrossRefGoogle Scholar
  12. Fleet GH (2011) Yeast spoilage of food and beverages. In: Kurtzman CP, Fell J, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 53–64CrossRefGoogle Scholar
  13. Fonseca A, Boekhout T, Fell JW (2011) Cryptococcus Vuillemin (1901). In: Kurtzman CP, Fell J, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1661–1738CrossRefGoogle Scholar
  14. Givnish TJ, Barfuss MHJ, Van EB, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Ziska G, Berry PE, Sytsma KJ (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. Am J Bot 98:872–895PubMedCrossRefGoogle Scholar
  15. Gofreddi SK, Kantor AH, Woodside WT (2011) Aquatic microbial habitats within a neotropical rainforest: bromeliads and pH-associated trends in bacterial diversity and composition. Microb Ecol 61:529–542CrossRefGoogle Scholar
  16. Guimarães-Souza BA, Mendes GB, Bento L, Marotta H, Santoro AL, Esteves FA, Pinho L, Farjalla VF, Enrich-Prast A (2006) Limnological parameters in the water accumulated in tropical bromeliads. Acta Limnol Bras 18:47–53Google Scholar
  17. Hagler AN, Rosa CA, Morais PB, Hagler LCM (1993) Yeasts and coliform bacteria of water accumulated in bromeliads of mangrove and sand dune ecosystems of southeast Brazil. Can J Microbiol 39:973–977. doi: 10.1139/m93-146 PubMedCrossRefGoogle Scholar
  18. Humber RA (2008) Evolution of entomopathogenicity in fungi. J Invert Pathol 98:262–266. doi: 10.1016/j.jip.2008.02.017 CrossRefGoogle Scholar
  19. Inselsbacher E, Cambui CA, Richter A, Stange CF, Mercier H, Wanek W (2007) Microbial activities and foliar uptake of nitrogen in the epiphytic bromeliad Vriesea gigantean. New Phytol 175:311–320PubMedCrossRefGoogle Scholar
  20. Ippolito A, Ghaouth AE, Wilson CL, Wisniewski M (2000) Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biol Technol 19:265–272CrossRefGoogle Scholar
  21. Kurtzman CP, Fell JW, Boekhout T, Robert V (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 97–107Google Scholar
  22. Lachance MA (2012) In defense of yeast sexual life cycles: the forma asexualis—an informal proposal. Yeast Newsl 61:24–25Google Scholar
  23. Lachance MA, Bowles JM, Starmer WT, Barker JSF (1999) Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian Hibiscus flowers. Can J Microbiol 45:172–177PubMedCrossRefGoogle Scholar
  24. Lanchance MA, Boekhout T, Scorzetti G (2011) Candida Berkhout (1923). In: Kurtzman CP, Fell J, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 987–1278CrossRefGoogle Scholar
  25. Landell MF, Mautone JN, Valente P (2006) Biodiversity of yeasts associated to bromeliads in ItapuãPark, Viamão/RS. Biociências 14:144–149Google Scholar
  26. Landell MF, Inácio J, Fonseca A, Vainstein MH, Valente P (2009) Cryptococcus bromeliarum sp. nov., an orange-coloured basidiomycetous yeast isolated from bromeliads in Brazil. Int J Syst Evol Microbiol 59:910–913PubMedCrossRefGoogle Scholar
  27. Landell MF, Billodre R, Ramos JP, Leoncini O, Vainstein MH, Valente P (2010) Candida aechmeae sp. nov. and Candida vrieseae sp. nov., novel yeast species isolated from the phylloplane of bromeliads in Southern Brazil. Int J Syst Evol Microbiol 60:244–248PubMedCrossRefGoogle Scholar
  28. Landell MF, Brandão LR, Barbosa AC, Ramos JP, Safar SVB, Gomes FCO, Sousa FM, Morais PB, Boretto L, Leoncini O, Ribeiro JR, Fungsin B, Takashima M, Nakase T, Lee CF, Vainstein MH, Fell JW, Scorzetti G, Vishniac HS, Rosa CA, Valente P (2014) Hannaella pagnoccae sp. nov., a tremellaceous yeast species isolated from plants and soil. Int J Syst Evol Microbiol 64:1970–1977PubMedCrossRefGoogle Scholar
  29. Libkind D, Moliné M, Sampaio JP, van Broock M (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69:353–362PubMedCrossRefGoogle Scholar
  30. Lieckfeldt E, Meyer W, Borner T (1993) Rapid identification and differentiation of yeast by DNA and PCR fingerprinting. J Basic Microbiol 33:413–426PubMedCrossRefGoogle Scholar
  31. Lopez LCS, Alves RRD, Rios RI (2009) Micro-environmental factors and the endemism of bromeliad aquatic fauna. Hydrobiol 625:151–156CrossRefGoogle Scholar
  32. Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648CrossRefGoogle Scholar
  33. Luther HE (2008) An alphabetical list of bromeliad binomials. The Bromeliad Society International Inc., OrlandoGoogle Scholar
  34. Magurran AE (2004) Measuring biological diversity. Blackwell Science Ltda, OxfordGoogle Scholar
  35. Marques AR, Lemos-Filho JP (2008) Reproductive phenology of bromeliad species at Serra da Piedade, Minas Gerais state, Brazil. Acta Bot Bras 22:417–424CrossRefGoogle Scholar
  36. Mautone JN, Landell MF, Fuentefria AM, Valente P (2010) Phylloplane yeasts as a source of industrially interesting enzymes. R Bras Bioci 8:169–173Google Scholar
  37. McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp FS, Makhold K, Prado J, Prud’homme van Reine WF, Smith GF, Wiersema JH, Turland NJ (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). Regnum Vegetabile 154. Koeltz Scientific BooksGoogle Scholar
  38. Mestre CM, Rosa CA, Safar SVB, Libkind D, Fontenla SB (2011) Yeast communities associated with the bulk-soil, rhizosphere and ectomycorrhizosphere of a Nothofagus pumilio forest in northwestern Patagonia, Argentina. FEMS Microbiol Ecol 78:531–541PubMedCrossRefGoogle Scholar
  39. Muggia L, Hafellner J, Wirtz N, Hawksworth DL, Grube M (2008) The sterile microfilamentous lichenized fungi Cystocoleus ebeneus and Racodium rupestre are relatives of plant pathogens and clinically important dothidealean fungi. Mycol Res 112:50–56. doi: 10.1016/j.mycres.2007.08.025 PubMedCrossRefGoogle Scholar
  40. Reche I, Pulido-Villena E, Morales-Baquero R, Casamayor E (2005) Does ecosystem size determine aquatic bacterial richness? Ecology 86:1715–1722CrossRefGoogle Scholar
  41. Rosa CA, Péter G (2006) Biodiversity and ecophysiology of yeast (The Yeast Handbook). Springer, New YorkGoogle Scholar
  42. Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic Grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167. doi: 10.1007/s00300-008-0515-z CrossRefGoogle Scholar
  43. Ruivo CCC, Lachance MA, Rosa CA, Bacci M Jr, Pagnocca F (2005) Candida bromeliacearum sp. nov. and Candida ubatubensis sp. nov., two yeast species isolated from the water tanks of Canistropsis seidelli (Bromeliaceae). Int J Syst Evol Microbiol 55:2213–2217PubMedCrossRefGoogle Scholar
  44. Ryan GS, Harper DAT, Whalley JS (1995) PALSTAT, statistics for palaeontologist. Chapman & Hall, LondonGoogle Scholar
  45. Safar SVB, Gomes FCO, Marques AR, Lachance MA, Rosa CA (2013) Kazachstania rupicola sp. nov., a yeast species isolated from water tanks of a bromeliad in Brazil. Int J Syst Evol Microbiol 63:1165–1168PubMedCrossRefGoogle Scholar
  46. Sampaio JP, Oberwinkler F (2011) Occultifur Oberwinkler (1990). In: Kurtzman CP, Fell J, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1515–1518CrossRefGoogle Scholar
  47. Sampaio JP, Bauer R, Begerow D, Oberwinkler F (1999) Occultifur externus sp. nov., a new species of simple-pored auricularioid heterobasidiomycete from plant litter in Portugal. Mycologia 91:1094–1101CrossRefGoogle Scholar
  48. Schmidt G, Zotz G (2002) Inherently slow growth in two Caribbean species: a demographic approach. J Veg Sci 13:527–534CrossRefGoogle Scholar
  49. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCentralPubMedCrossRefGoogle Scholar
  50. Vánky K, Lutz M, Shivas RG (2006) Anomalomyces panici, new genus and species of Ustilaginomycetes from Australia. Mycol Balcan 3:119–126Google Scholar
  51. Versieux LM (2011) Brazilian plants urgently needing conservation: the case of Vriesea minarum (Bromeliaceae). Phytotaxa 28:35–49Google Scholar
  52. Versieux LM, Wendt T (2007) Bromeliaceae diversity and conservation in Minas Gerais state, Brazil. Biodivers Conserv 16:2989–3009CrossRefGoogle Scholar
  53. White TJ, Bruns TD, Lee SB (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis NA, Gelfand J, Sninsky J (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322CrossRefGoogle Scholar
  54. Winkler U, Zotz G (2009) Highly efficient uptake of phosphorus in epiphytic bromeliads. Ann Bot 103:477–484PubMedCentralPubMedCrossRefGoogle Scholar
  55. Yurkov AM, Wehde T, Kahl T, Begerow D (2012) Aboveground deadwood deposition supports development of soil yeasts. Diversity 4:453–474CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fátima C. O. Gomes
    • 1
  • Silvana V. B. Safar
    • 2
  • Andrea R. Marques
    • 3
  • Adriana O. Medeiros
    • 4
  • Ana Raquel O. Santos
    • 2
  • Cláudia Carvalho
    • 6
  • Marc-André Lachance
    • 5
  • José Paulo Sampaio
    • 6
  • Carlos A. Rosa
    • 2
  1. 1.Departamento de QuímicaCentro Federal de Educação Tecnológica de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Microbiologia, ICB, C.P. 486Universidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Departamento de Ciências e Tecnologias AmbientaisCentro Federal de Educação Tecnológica de Minas GeraisBelo HorizonteBrazil
  4. 4.Instituto de Biologia, Campus Universitário de OndinaUniversidade Federal da BahiaSalvadorBrazil
  5. 5.Department of BiologyUniversity of Western OntarioLondonCanada
  6. 6.Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Centro de Recursos MicrobiológicosUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations