Advertisement

Antonie van Leeuwenhoek

, Volume 107, Issue 2, pp 589–595 | Cite as

Nioella nitratireducens gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from Azorean Island

  • Raju Rajasabapathy
  • Chellandi Mohandass
  • Jung-Hoon Yoon
  • Syed Gulam Dastager
  • Qing Liu
  • Thi-Nhan Khieu
  • Chu Ky Son
  • Wen-Jun Li
  • Ana Colaco
Original Paper

Abstract

A novel Gram-negative, non-spore forming, rod-shaped aerobic bacterium, designated SSW136T, was isolated from a surface seawater sample collected at Espalamaca (in Faial Island), Azores. Growth was found to occur from 10 to 37 °C, pH 6.0–8.0, and with 2–11 % of NaCl. 16S rRNA gene sequence indicated that the strain SSW136T belongs to the family Rhodobacteraceae. Strain SSW136T exhibited 96.3, 95.9, 95.7 and 95.5 sequence similarity to the type strains Oceanicola litoreus M-M22T, Roseovarius aestuarii SMK-122T, Marivita geojedonensis DPG-138T, and Pseudoruegeria aquimaris SW-255T respectively. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain SSW136T was affiliated to the family Rhodobacteraceae and formed a separate branch. The G+C content was 63.5 mol%. The major respiratory quinone was found to be Q-10. The polar lipids of strain SSW136T consisted of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids and three unidentified phospholipids. The major fatty acids were C18:1 ω7c (46.5 %), Cyclo-C19:0 ω8c (16.0 %) and C16:0 (12.8 %). On the basis of the morphological, genotypic, chemotaxonomic characteristics and low DNA–DNA relatedness, strain SSW136T is proposed to represent a novel genus and novel species, Nioella nitratireducens gen. nov., sp. nov., in the family Rhodobacteraceae. The type strain is SSW136T (=KCTC 32417T = NCIM 5499T).

Keywords

Nioella nitratireducens Novel genus and species Polyphasic taxonomy Seawater Espalamaca 

Notes

Acknowledgments

The authors are grateful to Dr. N. Ramaiah and R. M. Meena for providing DNA sequence facility. Author Rajasabapathy acknowledges CSIR for providing senior research fellowship. We acknowledge Department of Science & Technology, Govt. of India for the support through an Indo-Portugal bilateral program. We acknowledge MMRF-COMAPS under ICMAM, MoES for FAME facility supported by Dr. Shanta Nair, Dr. Anas Abdulaziz and V. Vijitha. We thank Dr. V. K. Banakar and Mr. Sarath for SEM analysis. IMAR-DOP/UAz is Research and Development Unit #531 and LARSyS—Associated Laboratory # 9 funded by the Portuguese Foundation for Science and Technology (FCT) through PEst project (Pest/OE/EEI/LA0009/2011–2014), and by DRCTC—Regional Government of the Azores through a Pluriannual Funding scheme. This is CSIR-NIO contribution number 5686.

Supplementary material

10482_2014_355_MOESM1_ESM.docx (300 kb)
Supplementary material 1 (DOCX 300 kb)

References

  1. Cerny G (1978) Studies on aminopeptidase for the distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:113–122CrossRefGoogle Scholar
  2. Collee JG, Fraser AG, Marmion BP, Simmons A (2008) Mackie and McCartney practical medical microbiology, 14th edn. Elsevier Private Limited, GurgaonGoogle Scholar
  3. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470CrossRefGoogle Scholar
  4. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  5. Farmer JJ, Hickman-Brenner FW (2006) The genera Vibrio and Photobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes, a handbook on the biology of bacteria, 3rd edn. Springer, New York, pp 508–563Google Scholar
  6. Felsenstein J (1985) Conference limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789CrossRefGoogle Scholar
  7. Fitch WM (1971) Toward defining the course of evolution: minimum change for specified tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  8. Garrity GM, Bell JA, Lilburn T (2005) Family I. Rhodobacteraceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). Springer, New York, p 161Google Scholar
  9. Khandeparker R, Verma P, Meena RM, Deobagkar DD (2011) Phylogenetic diversity of carbohydrate degrading culturable bacteria from Mandovi and Zuari estuaries, Goa, west coast of India. Estuar Coast Shelf Sci 95:359–366CrossRefGoogle Scholar
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  11. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Wiley, New York, pp 115–175Google Scholar
  12. Lee SY, Kang CH, Oh TK, Yoon JH (2012) Virgibacillus campisalis sp. nov., from a marine solar saltern. Int J Syst Evol Microbiol 62:347–351PubMedCrossRefGoogle Scholar
  13. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  14. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of isoprenoid quinines and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  15. Park S, Lee MH, Yoon JH (2013) Oceanicola litoreus sp. nov., an alphaproteobacterium isolated from the seashore sediment. Antonie Van Leeuwenhoek 103:859–866PubMedCrossRefGoogle Scholar
  16. Romanenko LA, Tanaka N, Frolova GM, Svetashev VI, Mikhailov VV (2011) Litoreibacter albidus gen. nov., sp. nov. and Litoreibacter janthinus sp. nov., members of the class Alphaproteobacteria isolated from the seashore. Int J Syst Evol Microbiol 61:148–154PubMedCrossRefGoogle Scholar
  17. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  18. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc., Newark, DEGoogle Scholar
  19. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  21. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  22. Wang H, Zhang X, Yan S, Qi Z, Yu Y, Zhang X-H (2012) Huaishuia halophila gen. nov., sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 62:223–228PubMedCrossRefGoogle Scholar
  23. Yoon J-H, Kang S-J, Lee J-S (2013) Marivita geojedonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 63:423–427PubMedCrossRefGoogle Scholar
  24. Yoon J-H, Kang S-J, Oh T-K (2008) Roseovarius aestuarii sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 58:1198–1202PubMedCrossRefGoogle Scholar
  25. Yoon J-H, Lee S-Y, Kang S-J, Lee C-H, Oh T-K (2007) Pseudoruegeria aquimaris gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 57:542–547PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Raju Rajasabapathy
    • 1
  • Chellandi Mohandass
    • 1
  • Jung-Hoon Yoon
    • 2
  • Syed Gulam Dastager
    • 3
  • Qing Liu
    • 4
  • Thi-Nhan Khieu
    • 4
    • 5
  • Chu Ky Son
    • 5
  • Wen-Jun Li
    • 4
  • Ana Colaco
    • 6
  1. 1.Biological Oceanography DivisionCSIR-National Institute of OceanographyDona PaulaIndia
  2. 2.Department of Food Science and BiotechnologySungkyunkwan UniversitySuwonSouth Korea
  3. 3.CSIR-National Chemical LaboratoryNCIM Resource CenterPuneIndia
  4. 4.Yunnan Institute of MicrobiologyYunnan UniversityKunmingPeople’s Republic of China
  5. 5.School of Biotechnology and Food TechnologyHanoi University of Science and TechnologyHanoiVietnam
  6. 6.IMAR-Department of Oceanography and FisheriesUniversity AçoresHortaPortugal

Personalised recommendations