Advertisement

Antonie van Leeuwenhoek

, Volume 107, Issue 2, pp 575–588 | Cite as

Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina

  • A. D. Vega-Avila
  • T. GumiereEmail author
  • P. A. M. Andrade
  • J. E. Lima-Perim
  • A. Durrer
  • M. Baigori
  • F. Vazquez
  • F. D. Andreote
Original Paper

Abstract

Plants interact with a myriad of microbial cells in the rhizosphere, an environment that is considered to be important for plant development. However, the differential structuring of rhizosphere microbial communities due to plant cultivation under differential agricultural practices remains to be described for most plant species. Here we describe the rhizosphere microbiome of grapevine cultivated under conventional and organic practices, using a combination of cultivation-independent approaches. The quantification of bacterial 16S rRNA and nifH genes, by quantitative PCR (qPCR), revealed similar amounts of these genes in the rhizosphere in both vineyards. PCR-DGGE was used to detect differences in the structure of bacterial communities, including both the complete whole communities and specific fractions, such as Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and those harboring the nitrogen-fixing related gene nifH. When analyzed by a multivariate approach (redundancy analysis), the shifts observed in the bacterial communities were poorly explained by variations in the physical and chemical characteristics of the rhizosphere. These approaches were complemented by high-throughput sequencing (67,830 sequences) based on the V6 region of the 16S rRNA gene, identifying the major bacterial groups present in the rhizosphere of grapevines: Proteobacteria, Actinobacteria, Firmicutes, Bacteriodetes, Acidobacteria, Cloroflexi, Verrucomicrobia and Planctomycetes, which occur in distinct proportions in the rhizosphere from each vineyard. The differences might be related to the selection of plant metabolism upon distinct reservoirs of microbial cells found in each vineyard. The results fill a gap in the knowledge of the rhizosphere of grapevines and also show distinctions in these bacterial communities due to agricultural practices.

Keywords

Bacterial communities Cultivation-independent analysis Plant–microbe interactions Rhizosphere microbiome Organic management 

Notes

Acknowledgments

The authors would like to thank the following company for assistance: “Las Moras” (Ing. Agr. Claudio Rodriguez) for rhizosphere samples. We also thank Rodrigo G. Taketani and Itamar S. Melo, from Embrapa Environment (Jaguariúna, Brazil), for their support of the sequencing methodology. This study was partially funded by Res. 022/13 CS. (SECyT and National University of San Juan, 2013–2014), and by a postdoctoral Grant awarded to A.D.V.A. from CONICET (2012/-2014).

Supplementary material

10482_2014_353_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 42 kb)

References

  1. Abraham E, del Valle HF, Roig F et al (2009) Overview of the geography of the Monte Desert biome (Argentina). J Arid Environ 73:144–153. doi: 10.1016/j.jaridenv.2008.09.028 CrossRefGoogle Scholar
  2. Andreote FD, Azevedo JL, Araújo WL (2009a) Assessing the diversity of bacterial communities associated with plants. Braz J Microbiol 40:417–432PubMedCentralPubMedCrossRefGoogle Scholar
  3. Andreote FD, Rossetto PB, Mendes R et al (2009b) Bacterial community in the rhizosphere and rhizoplane of wild type and transgenic eucalyptus. World J Microbiol Biotechnol 25:1065–1073. doi: 10.1007/s11274-009-9990-9 CrossRefGoogle Scholar
  4. Andreote FA, Da Rocha UN, Azevedo JL, van Overbeek LS (2010) Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie Van Leeuwenhoek 97:389–399. doi: 10.1007/s10482-010-9421-9 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Aranda S, Montes-Borrego M, Jiménez-Díaz RM, Landa BB (2011) Microbial communities associated with the root system of wild olives (Olea europaea L. subsp. europaea var. sylvestris) are good reservoirs of bacteria with antagonistic potential against Verticillium dahliae. Plant Soil 343:329–345. doi: 10.1007/s11104-011-0721-2 CrossRefGoogle Scholar
  6. Bertrand H, Nalin R (2001) Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biol Fertil Soils 33:152–156CrossRefGoogle Scholar
  7. Bisigato A, Villagra P, Ares J, Rossi B (2009) Vegetation heterogeneity in Monte Desert ecosystems: a multi-scale approach linking patterns and processes. J Arid Environ 73:182–191CrossRefGoogle Scholar
  8. Boix-Fayos C, Calvo-Cases A, Imeson AC, Soriano-Soto MD (2001) Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena 44:47–67. doi: 10.1016/S0341-8162(00)00176-4 CrossRefGoogle Scholar
  9. Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36:1–12PubMedCrossRefGoogle Scholar
  10. Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22. doi: 10.1016/j.geoderma.2004.03.005 CrossRefGoogle Scholar
  11. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) Correspondence QIIME allows analysis of high-throughput community sequencing data Intensity normalization improves color calling in solid sequencing. Nat Publ Gr 7:335–336. doi: 10.1038/nmeth0510-335 Google Scholar
  12. Caravaca F, Alguacil MM, Torres P, Roldán A (2005) Plant type mediates rhizospheric microbial activities and soil aggregation in a semiarid Mediterranean salt marsh. Geoderma 124:375–382. doi: 10.1016/j.geoderma.2004.05.010 CrossRefGoogle Scholar
  13. Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  14. De Fina AL (1992) Aptitud agroclimática de la República Argentina. First edition. Academia Nacional de Agronomía y Veterinaria [ed.]. Buenos AiresGoogle Scholar
  15. Dell’Amico E, Mazzocchi M, Cavalca L et al (2008) Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil. Microbiol Res 163:671–683. doi: 10.1016/j.micres.2006.09.003 PubMedCrossRefGoogle Scholar
  16. Dias ACF, Pereira e Silva MDC, Cotta SR et al (2012) Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments. Appl Environ Microbiol 78:7960–7967. doi: 10.1128/AEM.02273-12 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Dias ACF, Dini-Andreote F, Hannula SE et al (2013) Different selective effects on rhizosphere bacteria exerted by genetically modified versus conventional potato lines. PLoS One 8:e67948. doi: 10.1371/journal.pone.0067948 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461PubMedCrossRefGoogle Scholar
  19. Farinelli F (2007) The awakening of the sleeping giant: export growth and technological catch-up of the Argentine wine industry. Int J Technol Glob 3:179–196Google Scholar
  20. Girvan M, Bullimore J (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69:1800–1809. doi: 10.1128/AEM.69.3.1800 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Gomes N, Heuer H, Schönfeld J (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232:167–180CrossRefGoogle Scholar
  22. Hammer O, Harper DAT, Ryan PD (2011) PAST—paleontological statistics: paleontological statistics software package for education and data analysis. Paleontol Electron 4:9Google Scholar
  23. Hardoim PR, Andreote FD, Reinhold-Hurek B et al (2011) Rice root-associated bacteria: insights into community structures across 10 cultivars. FEMS Microbiol Ecol 77:154–164. doi: 10.1111/j.1574-6941.2011.01092.x PubMedCrossRefGoogle Scholar
  24. Heuer H, Krsek M, Baker P et al (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241PubMedCentralPubMedGoogle Scholar
  25. INV (Instituto nacional de Vitivinicultura) (2011) Registro de viñedos y superficie. San Juan- Base datos congelada al cierre de la cosecha 2011Google Scholar
  26. Lejon DPH, Martins JMF, Lévêque J et al (2008) Copper dynamics and impact on microbial communities in soils of variable organic status. Environ Sci Technol 42:2819–2825PubMedCrossRefGoogle Scholar
  27. Linsenmeier A, Lehnart R, Löhnertz O, Michel H (2010) Investigation of grapevine root distribution by in situ minirhizotron observation. Vitis 49:1–6Google Scholar
  28. Mäder P, Fliessbach A, Dubois D et al (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697. doi: 10.1126/science.1071148 PubMedCrossRefGoogle Scholar
  29. Martins G, Miot-Sertier C, Lauga B et al (2012) Grape berry bacterial microbiota: impact of the ripening process and the farming system. Int J Food Microbiol 158:93–100. doi: 10.1016/j.ijfoodmicro.2012.06.013 PubMedCrossRefGoogle Scholar
  30. Mendes R, Kruijt M, de Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. doi: 10.1126/science.1203980 PubMedCrossRefGoogle Scholar
  31. Morlat R, Jacquet A (2003) Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward. Am J Enol Vitc 54(1):1–7Google Scholar
  32. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedCentralPubMedGoogle Scholar
  33. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. doi: 10.1038/nrmicro3109 PubMedCrossRefGoogle Scholar
  34. Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103PubMedCrossRefGoogle Scholar
  35. Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941. doi: 10.1111/j.1462-2920.2008.01775.x PubMedCrossRefGoogle Scholar
  36. Puglisi E, Pascazio S, Suciu N et al (2013) Rhizosphere microbial diversity as influenced by humic substance amendments and chemical composition of rhizodeposits. J Geochem Explor 129:82–94. doi: 10.1016/j.gexplo.2012.10.006 CrossRefGoogle Scholar
  37. Saison C, Degrange V, Oliver R et al (2006) Alteration and resilience of the soil microbial community following compost amendment: effects of compost level and compost-borne microbial community. Environ Microbiol 8:247–257. doi: 10.1111/j.1462-2920.2005.00892.x PubMedCrossRefGoogle Scholar
  38. Silva AP, Babujiaa LC, Matsumotoa LS et al (2013) Bacterial diversity under different tillage and crop rotation systems in an oxisol of southern Brazil. Open Agric J 7:40–47CrossRefGoogle Scholar
  39. Simonet P, Grosjean MC, Misra AK et al (1991) Frankia genus-specific characterization by polymerase chain reaction. Appl Environ Microbiol 57:3278–3286PubMedCentralPubMedGoogle Scholar
  40. Smalla K, Wieland G, Buchner A et al (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751. doi: 10.1128/AEM.67.10.4742-4751.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Sogin ML, Morrison HG, Huber JA et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120. doi: 10.1073/pnas.0605127103 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Steenwerth KL, Drenovsky RE, Lambert J-J et al (2008) Soil morphology, depth and grapevine root frequency influence microbial communities in a Pinot noir vineyard. Soil Biol Biochem 40:1330–1340. doi: 10.1016/j.soilbio.2007.04.031 CrossRefGoogle Scholar
  43. Ter Braak C, Smilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination (version 4)Google Scholar
  44. Van Elsas JD, Chiurazzi M, Mallon CA et al (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA 109:1159–1164. doi: 10.1073/pnas.1109326109 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Van Overbeek L, van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296. doi: 10.1111/j.1574-6941.2008.00469.x PubMedCrossRefGoogle Scholar
  46. van Raij B, Andrade JC, Cantarella H, Quaggio JA (2001) Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico, Campinas 1:173–277Google Scholar
  47. Wu T, Chellemi DO, Graham JH et al (2008a) Comparison of soil bacterial communities under diverse agricultural land management and crop production practices. Microb Ecol 55:293–310. doi: 10.1007/s00248-007-9276-4 PubMedCrossRefGoogle Scholar
  48. Wu T, Chellemi DO, Graham JH, Rosskopf EN (2008b) Assessment of fungal communities in soil and tomato roots subjected to diverse land and crop management systems. Soil Biol Biochem 40:1967–1970. doi: 10.1016/j.soilbio.2008.02.012 CrossRefGoogle Scholar
  49. Zhang X, Norton L (2002) Effect of exchangeable Mg on saturated hydraulic conductivity, disaggregation and clay dispersion of disturbed soils. J Hydrol 260:194–205. doi: 10.1016/S0022-1694(01)00612-6 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A. D. Vega-Avila
    • 1
    • 2
  • T. Gumiere
    • 1
    Email author
  • P. A. M. Andrade
    • 1
  • J. E. Lima-Perim
    • 1
  • A. Durrer
    • 1
  • M. Baigori
    • 3
  • F. Vazquez
    • 2
  • F. D. Andreote
    • 1
  1. 1.Department of Soil Science, “Luiz de Queiroz” College of AgricultureUniversity of São Paulo (ESALQ/USP)PiracicabaBrazil
  2. 2.Faculty of Engineering, Institute of Biotechnology (IBT)University National of San JuanSan JuanArgentina
  3. 3.PROIMI, Industrial Microbiology Processes (CONICET)San Miguel de TucumánArgentina

Personalised recommendations