Antonie van Leeuwenhoek

, Volume 107, Issue 2, pp 467–485 | Cite as

A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives

  • Sohail Naushad
  • Mobolaji Adeolu
  • Shirley Wong
  • Misbah Sohail
  • Herbert E. Schellhorn
  • Radhey S. GuptaEmail author
Original Paper


The current taxonomy of the order Xanthomonadales is highly problematic and no comprehensive phylogenomic studies have been completed that include the most divergent members within the order. In this work, we have completed a phylogenomic analysis of a wide range of genomes, five of which were sequenced for the first time for this work, representing the vast majority of the diversity within the order Xanthomonadales. Using comparative genomic techniques, we have identified a large number of conserved signature inserts/deletions (CSIs) that are specifically found in different groups of related organisms, at different taxonomic levels, within the order. Our phylogenetic analyses do not support a monophyletic grouping of the members of the order Xanthomonadales and no CSIs were identified which are uniquely shared by all sequenced species within this order. However, our work has identified 10 CSIs which are specific to all members of the family Xanthomonadaceae and an additional 10 and 11 CSIs that are specific to one of two phylogenetically well-defined clades within the family Xanthomonadaceae. On the basis of the identified CSIs and the results of phylogenomic analyses, we propose a new taxonomic framework for the order Xanthomonadales. In this proposal, the families Algiphilaceae and Solimonadaceae (Nevskiaceae), which do not branch with the other members of the order Xanthomonadales, are transferred into the order Nevskiales ord. nov. The remaining members of the order Xanthomonadales are divided into two families: the family Xanthomonadaceae, containing the genus Xanthomonas and its closest relatives, and a new family, Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Additionally, we have also emended descriptions of the order Lysobacterales, the family Lysobacteraceae, and the family Nevskiaceae to indicate that they are earlier synonyms of the order Xanthomonadales, the family Xanthomonadaceae, and the family Solimonadaceae, respectively.


Xanthomonadales Lysobacterales Lysobacteraceae Rhodanobacteraceae Nevskiales Nevskiaceae Salinisphaeraceae Phylogenetic trees Conserved signature indels Molecular signatures 



We thank Professor Iain Sutcliffe for valuable comments and suggestions for improvement of this manuscript. This work was supported by a research grant from the Natural Science and Engineering Research Council of Canada to RSG.

Supplementary material

10482_2014_344_MOESM1_ESM.pdf (347 kb)
Supplementary material 1 (PDF 346 kb)


  1. Adeolu M, Gupta RS (2013) Phylogenomics and molecular signatures for the order Neisseriales: proposal for division of the order Neisseriales into the emended family Neisseriaceae and Chromobacteriaceae fam. nov. Anton Leeuw Int J G 104(1):1–24CrossRefGoogle Scholar
  2. Antunes A, Eder W, Fareleira P, Santos H, Huber R (2003) Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine–seawater interface of the Shaban Deep, Red Sea. Extremophiles 7(1):29–34PubMedGoogle Scholar
  3. Bhandari V, Ahmod NZ, Shah HN, Gupta RS (2013) Molecular signatures for Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus. Int J Syst Evol Microbiol 63(7):2712–2726PubMedCrossRefGoogle Scholar
  4. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552PubMedCrossRefGoogle Scholar
  5. Charlebois RL, Doolittle WF (2004) Computing prokaryotic gene ubiquity: Rescuing the core from extinction. Genome Res 14(12):2469–2477PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chatterjee S, Almeida RPP, Lindow S (2008) Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Annu Rev Phytopathol 46:243–271PubMedCrossRefGoogle Scholar
  7. Chen J, Xie G, Han S, Chertkov O, Sims D, Civerolo EL (2010) Whole genome sequences of two Xylella fastidiosa strains (M12 and M23) causing almond leaf scorch disease in California. J Bacteriol 192(17):4534PubMedCentralPubMedCrossRefGoogle Scholar
  8. Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28(3):367–393CrossRefGoogle Scholar
  9. Ciccarelli FD, Doerks T, Von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311(5765):1283–1287PubMedCrossRefGoogle Scholar
  10. Cole J, Wang Q, Fish J, Chai B, McGarrell D, Sun Y, Brown C, Porras-Alfaro A, Kuske C, Tiedje J (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42(1):D633PubMedCentralPubMedCrossRefGoogle Scholar
  11. Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, Saunders D, Arrowsmith C, Carver T, Peters N (2008) The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9(4):R74PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cutino-Jimenez AM, Martins-Pinheiro M, Lima WC, Martin-Tornet A, Morales OG, Menck CFM (2010) Evolutionary placement of Xanthomonadales based on conserved protein signature sequences. Mol Phylogen Evol 54(2):524–534CrossRefGoogle Scholar
  13. da Silva AR, Ferro JA, Reinach F, Farah C, Furlan L, Quaggio R, Monteiro-Vitorello C, Van Sluys M, Almeida N, Alves L (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417(6887):459–463PubMedCrossRefGoogle Scholar
  14. Darrasse A, Carrere S, Barbe V, Boureau T, Arrieta-Ortiz ML, Bonneau S, Briand M, Brin C, Cociancich S, Durand K et al (2013) Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genomics 14:761PubMedCentralPubMedCrossRefGoogle Scholar
  15. De Clercq D, Van Trappen S, Cleenwerck I, Ceustermans A, Swings J, Coosemans J, Ryckeboer J (2006) Rhodanobacter spathiphylli sp. nov., a gammaproteobacterium isolated from the roots of Spathiphyllum plants grown in a compost-amended potting mix. Int J Syst Evol Microbiol 56(Pt 8):1755–1759PubMedCrossRefGoogle Scholar
  16. Gao B, Gupta RS (2012a) Microbial systematics in the post-genomics era. Anton Leeuw Int J G 101(1):45–54CrossRefGoogle Scholar
  17. Gao B, Gupta RS (2012b) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76(1):66–112PubMedCentralPubMedCrossRefGoogle Scholar
  18. Gao B, Mohan R, Gupta RS (2009) Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria. Int J Syst Evol Microbiol 59(2):234–247PubMedCrossRefGoogle Scholar
  19. Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62(4):1435PubMedCentralPubMedGoogle Scholar
  20. Gupta RS (2010) Applications of conserved indels for understanding microbial phylogeny. In: Oren A, Papke RT (eds) Molecular phylogeny of microorganisms. Caister Academic Press, Norfolk, pp 135–150Google Scholar
  21. Gupta RS (2014) Identification of conserved indels that are useful for classification and evolutionary studies Methods in Microbiology, vol 41. Academic Press:  10.1016/bs.mim.2014.05.003
  22. Gupta RS, Lali R (2013) Molecular signatures for the phylum Aquificae and its different clades: proposal for division of the phylum Aquificae into the emended order Aquificales, containing the families Aquificaceae and Hydrogenothermaceae, and a new order Desulfurobacteriales ord. nov., containing the family Desulfurobacteriaceae. Anton Leeuw Int J G 104(3):349–368CrossRefGoogle Scholar
  23. Gupta RS, Mahmood S, Adeolu M (2013) A phylogenomic and molecular signature based approach for characterization of the phylum Spirochaetes and its major clades: proposal for a taxonomic revision of the phylum. Frontiers in microbiology 4:217PubMedCentralPubMedGoogle Scholar
  24. Gutierrez T, Green DH, Whitman WB, Nichols PD, Semple KT, Aitken MD (2012) Algiphilus aromaticivorans gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from a culture of the marine dinoflagellate Lingulodinium polyedrum, and proposal of Algiphilaceae fam. nov. Int J Syst Evol Microbiol 62(11):2743–2749PubMedCrossRefGoogle Scholar
  25. Henrici AT, Johnson DE (1935) Studies of Freshwater Bacteria: II. Stalked Bacteria, a New Order of Schizomycetes. J Bacteriol 30(1):61–93PubMedCentralPubMedGoogle Scholar
  26. Im WT, Lee ST, Yokota A (2004) Rhodanobacter fulvus sp. nov., a beta-galactosidase-producing gammaproteobacterium. J Gen Appl Microbiol 50(3):143–147PubMedCrossRefGoogle Scholar
  27. Jalan N, Kumar D, Yu F, Jones JB, Graham JH, Wang N (2013) Complete genome sequence of Xanthomonas citri subsp. citri Strain Aw12879, a restricted-host-range citrus canker-causing bacterium. Genome Announc 1(3):e00235-13PubMedCentralPubMedCrossRefGoogle Scholar
  28. Jaufeerally-Fakim Y, Dookun A (2000) Extraction of high quality DNA from polysaccharides-secreting xanthomonads. Sci Technol Res J Univ Maurit 6:33–40Google Scholar
  29. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with clustal X. Trends Biochem Sci 23(10):403PubMedCrossRefGoogle Scholar
  30. Kostka JE, Green SJ, Rishishwar L, Prakash O, Katz LS, Marino-Ramirez L, Jordan IK, Munk C, Ivanova N, Mikhailova N et al (2012) Genome sequences for six Rhodanobacter strains, isolated from soils and the terrestrial subsurface, with variable denitrification capabilities. J Bacteriol 194(16):4461–4462PubMedCentralPubMedCrossRefGoogle Scholar
  31. Kyrpides N, Overbeek R, Ouzounis C (1999) Universal protein families and the functional content of the last universal common ancestor. J Mol Evol 49(4):413–423PubMedCrossRefGoogle Scholar
  32. Lee B-M, Park Y-J, Park D-S, Kang H-W, Kim J-G, Song E-S, Park I-C, Yoon U-H, Hahn J-H, Koo B-S (2005) The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 33(2):577–586PubMedCentralPubMedCrossRefGoogle Scholar
  33. Lee CS, Kim KK, Aslam Z, Lee ST (2007) Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. Int J Syst Evol Microbiol 57(Pt 8):1775–1779PubMedCrossRefGoogle Scholar
  34. Lee SH, Jin HM, Lee HJ, Kim JM, Jeon CO (2012) Complete genome sequence of the BTEX-degrading bacterium Pseudoxanthomonas spadix BD-a59. J Bacteriol 194(2):544PubMedCentralPubMedCrossRefGoogle Scholar
  35. Looney WJ, Narita M, Mühlemann K (2009) Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect Dis 9(5):312–323PubMedCrossRefGoogle Scholar
  36. Losey NA, Stevenson BS, Verbarg S, Rudd S, Moore ER, Lawson PA (2013) Fontimonas thermophila gen. nov., sp. nov., a moderately thermophilic bacterium isolated from a freshwater hot spring, and proposal of Solimonadaceae fam. nov. to replace Sinobacteraceae Zhou et al. 2008. Int J Syst Evol Microbiol 63(1):254–259PubMedCrossRefGoogle Scholar
  37. Meidanis J, Braga MD, Verjovski-Almeida S (2002) Whole-genome analysis of transporters in the plant pathogen Xylella fastidiosa. Microbiol Mol Biol Rev 66(2):272–299PubMedCentralPubMedCrossRefGoogle Scholar
  38. Nalin R, Simonet P, Vogel TM, Normand P (1999) Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 49(1):19–23PubMedCrossRefGoogle Scholar
  39. Naushad HS, Gupta RS (2013) Phylogenomics and molecular signatures for species from the plant pathogen-containing order Xanthomonadales. PLoS ONE 8(2):e55216PubMedCentralPubMedCrossRefGoogle Scholar
  40. Oren A (2010) The phyla of prokaryotes—cultured and uncultured. In: Oren A, Papke RT (eds) Molecular phylogeny of microorganisms. Caister Academic Press, Norfolk, pp 85–107Google Scholar
  41. Park JH, Kim R, Aslam Z, Jeon CO, Chung YR (2008) Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 58(2):387–392PubMedCrossRefGoogle Scholar
  42. Parte AC (2013) LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:D613–D616PubMedCentralPubMedCrossRefGoogle Scholar
  43. Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R, Cociancich S, Couloux A, Darrasse A, Gouzy J, Jacques MA et al (2009) The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC Genomics 10:616PubMedCentralPubMedCrossRefGoogle Scholar
  44. Qian W, Jia Y, Ren SX, He YQ, Feng JX, Lu LF, Sun Q, Ying G, Tang DJ, Tang H et al (2005) Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res 15(6):757–767PubMedCentralPubMedCrossRefGoogle Scholar
  45. Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15(11):454–459PubMedCrossRefGoogle Scholar
  46. Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425(6960):798–804PubMedCrossRefGoogle Scholar
  47. Ryan RP, Vorhölter F-J, Potnis N, Jones JB, Van Sluys M-A, Bogdanove AJ, Dow JM (2011) Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nat Rev Microbiol 9(5):344–355PubMedCrossRefGoogle Scholar
  48. Saddler GS, Bradbury JF (2005a) Order III. Xanthomonadales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, Boone, Vos P, Goodfellow M, Rainey FA, Schleifer K-H (eds) Bergey’s manual of systematic bacteriology. Springer, Austin, pp 63–122CrossRefGoogle Scholar
  49. Saddler GS, Bradbury JF (2005b) Xanthomonadaceae fam. nov Validation of publication of new names and new combinations previously effectively published outside the IJSEM, List no 106. Int J Syst Evol Microbiol 55:2235–2238CrossRefGoogle Scholar
  50. Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD, Tsuge S, Furutani A, Ochiai H, Delcher AL, Kelley D (2008) Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 9(1):204PubMedCentralPubMedCrossRefGoogle Scholar
  51. Shimane Y, Tsuruwaka Y, Miyazaki M, Mori K, Minegishi H, Echigo A, Ohta Y, Maruyama T, Grant WD, Hatada Y (2013) Salinisphaera japonica sp. nov., a moderately halophilic bacterium isolated from the surface of a deep-sea fish, Malacocottus gibber, and emended description of the genus Salinisphaera. Int J Syst Evol Microbiol 63(6):2180–2185PubMedCrossRefGoogle Scholar
  52. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30(1):225–420CrossRefGoogle Scholar
  53. Studholme DJ, Wasukira A, Paszkiewicz K, Aritua V, Thwaites R, Smith J, Grant M (2011) Draft genome sequences of Xanthomonas sacchari and two banana-associated xanthomonads reveal insights into the Xanthomonas group 1 clade. Genes 2(4):1050–1065PubMedCentralPubMedCrossRefGoogle Scholar
  54. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  55. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Lectures on mathematics in the life sciences, 17th edn. American Mathematical Society, Providence, pp 57–86Google Scholar
  56. Tindall B (2014a) Names at the rank of class, subclass and order, their typification and current status: supplementary information to Opinion 79. Judicial commission of the international committee on systematics of prokaryotes. Int J Syst Evol Microbiol 64(10):3599–3602PubMedCrossRefGoogle Scholar
  57. Tindall BJ (2014b) The family name Solimonadaceae Losey et al. 2013 is illegitimate, proposals to create the names ‘Sinobacter soli’ comb. nov. and ‘Sinobacter variicoloris’ contravene the Code, the family name Xanthomonadaceae Saddler and Bradbury 2005 and the order name Xanthomonadales Saddler and Bradbury 2005 are illegitimate and notes on the application of the family names Solibacteraceae Zhou et al. 2008, Nevskiaceae Henrici and Johnson 1935 (Approved Lists 1980) and Lysobacteraceae Christensen and Cook 1978 (Approved Lists 1980) and order name Lysobacteriales Christensen and Cook 1978 (Approved Lists 1980) with respect to the classification of the corresponding type genera Solibacter Zhou et al. 2008 Nevskia Famintzin 1892 (Approved Lists 1980) and Lysobacter Christensen and Cook 1978 (Approved Lists 1980) and importance of accurately expressing the link between a taxonomic name, its authors and the corresponding description/circumscription/emendation. Int J Syst Evol Microbiol 64(1):293–297PubMedCrossRefGoogle Scholar
  58. Van Sluys MA, de Oliveira MC, Monteiro-Vitorello CB, Miyaki CY, Furlan LR, Camargo LE, da Silva AC, Moon DH, Takita MA, Lemos EG et al (2003) Comparative analyses of the complete genome sequences of Pierce’s disease and citrus variegated chlorosis strains of Xylella fastidiosa. J Bacteriol 185(3):1018–1026PubMedCentralPubMedCrossRefGoogle Scholar
  59. Williams KP, Gillespie JJ, Sobral BW, Nordberg EK, Snyder EE, Shallom JM, Dickerman AW (2010) Phylogeny of gammaproteobacteria. J Bacteriol 192(9):2305–2314PubMedCentralPubMedCrossRefGoogle Scholar
  60. Wilson K (1987) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2.4.1–2.4.2Google Scholar
  61. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462(7276):1056–1060PubMedCentralPubMedCrossRefGoogle Scholar
  62. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO (2013) The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. doi: 10.1093/nar/gkt1209 Google Scholar
  63. Zhou Y, Zhang Y-Q, Zhi X-Y, Wang X, Dong J, Chen Y, Lai R, Li W-J (2008) Description of Sinobacter flavus gen. nov., sp. nov., and proposal of Sinobacteraceae fam. nov. Int J Syst Evol Microbiol 58(1):184–189PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sohail Naushad
    • 1
  • Mobolaji Adeolu
    • 1
  • Shirley Wong
    • 2
  • Misbah Sohail
    • 1
  • Herbert E. Schellhorn
    • 2
  • Radhey S. Gupta
    • 1
    Email author
  1. 1.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
  2. 2.Department of BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations