Antonie van Leeuwenhoek

, Volume 107, Issue 2, pp 367–374 | Cite as

Aquibacillus salifodinae sp. nov., a novel bacterium isolated from a salt mine in Xinjiang province, China

  • Wei-Yan Zhang
  • Jing Hu
  • Xin-Qi Zhang
  • Xu-Fen Zhu
  • Min Wu
Original Paper


A Gram-positive, rod-shaped, strictly aerobic bacterium, strain WSY08-1T, was isolated from a salt mine in Wensu county, Xinjiang province, China. Spherical to ellipsoidal endospores were observed to be formed in terminal swollen sporangia. Strain WSY08-1T was found to be able to grow at 20–45 °C (optimum 37 °C), 0–10 % (w/v) NaCl (optimum 4 %, w/v) and pH 6.0–9.0 (optimum 7.0). Catalase and oxidase activities were observed to be positive. The cell-wall peptidoglycan of strain WSY08-1T was found to contain meso-diaminopimelic acid. Menaquinone-7 (MK-7) was identified as the predominant isoprenoid quinone. The polar lipids were found to consist of phosphatidylglycerol, diphosphatidylglycerol, an unknown glycolipid, two unknown phospholipids and an unknown lipid. The major cellular fatty acids were identified as anteiso-C15:0 and anteiso-C17:0. The DNA G+C content was determined to be 36.9 mol%. Analysis of the 16S rRNA gene sequence showed that strain WSY08-1T is closely related to Aquibacillus halophilus B6BT, Aquibacillus koreensis BH30097T and Aquibacillus albus YIM 93642T (97.6, 96.9 and 96.5 % similarity, respectively). The level of DNA–DNA relatedness between strains WSY08-1T and A. halophilus B6BT was 31.4 %. On the basis of its phenotypic, chemotaxonomic and genotypic characteristics, strain WSY08-1T is considered to represent a novel species in the genus Aquibacillus, for which the name Aquibacillus salifodinae sp. nov. is proposed. The type strain is WSY08-1T (=JCM 19761T = CGMCC 1.12849T).


Aquibacillus salifodinae sp. nov. Polyphasic taxonomy 16S rRNA gene Salt mine 



This work was supported by grants from the National Natural Science Foundation of China (No. 31170001).

Supplementary material

10482_2014_335_MOESM1_ESM.docx (931 kb)
Supplementary material 1 (DOCX 931 kb)


  1. Amoozegar MA, Bagheri M, Didari M, Mehrshad M, Schumann P, Spröer C, Sánchez-Porro C, Ventosa A (2014) Aquibacillus halophilus gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Virgibacillus koreensis as Aquibacillus koreensis comb. nov. and Virgibacillus albus as Aquibacillus albus comb. nov. Int J Syst Evol Microbiol 64:3616–3623PubMedCrossRefGoogle Scholar
  2. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  3. Dong XZ, Cai MY (2001) Determination of biochemical properties. In: Dong XZ, Cai MY (eds) Manual for the systematic identification of General Bacteria. Science Press, Beijing, pp 370–398 in ChineseGoogle Scholar
  4. Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485PubMedCentralPubMedGoogle Scholar
  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  6. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  7. Grishchenkov VG, Townsend RT, McDonald TJ, Autenrieth RL, Bonner JS, Boronin AM (2000) Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. Process Biochem 35:889–896CrossRefGoogle Scholar
  8. Gutiérrez C, González C (1972) Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517PubMedCentralPubMedGoogle Scholar
  9. Huo YY, Xu XW, Cui HL, Wu M (2010) Gracilibacillus ureilyticus sp. nov., a halotolerant bacterium from a saline-alkaline soil. Int J Syst Evol Microbiol 60:1383–1386PubMedCrossRefGoogle Scholar
  10. Huß VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192PubMedCrossRefGoogle Scholar
  11. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  12. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  13. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 19:161–207CrossRefGoogle Scholar
  14. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361CrossRefGoogle Scholar
  15. Lee JS, Lim JM, Lee KC, Lee JC, Park YH, Kim CJ (2006) Virgibacillus koreensis sp. nov., a novel bacterium from a salt field, and transfer of Virgibacillus picturae to the genus Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. Int J Syst Evol Microbiol 56:251–257PubMedCrossRefGoogle Scholar
  16. Logan JM, Berge O, Bishop AH, Busse HJ, De Vos P, Fritze D, Heyndrickx M, Kämpfer P, Rabinovitch L, Salkinoja-Salonen MS, Seldin L, Ventosa A (2009) Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121PubMedCrossRefGoogle Scholar
  17. Mesbah M, Whitman WB (1989) Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479:297–306PubMedCrossRefGoogle Scholar
  18. Minnikin DE, Odonnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Method 2:233–241CrossRefGoogle Scholar
  19. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  20. Skerman VBD (1967) A guide to the identification of the genera of bacteria, 2nd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  21. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121 Google Scholar
  22. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCentralPubMedCrossRefGoogle Scholar
  23. Xu XW, Wu YH, Zhou Z, Wang CS, Zhou YG, Zhang HB, Wang Y, Wu M (2007) Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov., and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57:1619–1624PubMedCrossRefGoogle Scholar
  24. Zhang YJ, Zhou Y, Ja M, Shi R, Chun-Yu WX, Yang LL, Tang SK, Li WJ (2012) Virgibacillus albus sp. nov., a novel moderately halophilic bacterium isolated from Lop Nur salt lake in Xinjiang province, China. Antonie van Leeuwenhoek 102:553–560PubMedCrossRefGoogle Scholar
  25. Zhang WY, Fang MX, Zhang WW, Xiao C, Zhang XQ, Yu ZP, Zhu XF, Wu M (2013) Extensimonas vulgaris gen. nov., sp. nov., a novel member of the family Comamonadaceae. Int J Syst Evol Microbiol 63:2062–2068PubMedCrossRefGoogle Scholar
  26. Zhu XF (2011) Modern experimental technique of microbiology. Zhejiang University Press, Hangzhou English translationGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Wei-Yan Zhang
    • 1
  • Jing Hu
    • 1
  • Xin-Qi Zhang
    • 2
  • Xu-Fen Zhu
    • 1
  • Min Wu
    • 1
  1. 1.College of Life SciencesZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.College of Forestry and BiotechnologyZhejiang Agricultural and Forestry UniversityLin’anPeople’s Republic of China

Personalised recommendations