Advertisement

Antonie van Leeuwenhoek

, Volume 107, Issue 1, pp 225–240 | Cite as

FluG affects secretion in colonies of Aspergillus niger

  • Fengfeng Wang
  • Pauline Krijgsheld
  • Marc Hulsman
  • Charissa de Bekker
  • Wally H. Müller
  • Marcel Reinders
  • Ronald P. de Vries
  • Han A. B. WöstenEmail author
Original Paper

Abstract

Colonies of Aspergillus niger are characterized by zonal heterogeneity in growth, sporulation, gene expression and secretion. For instance, the glucoamylase gene glaA is more highly expressed at the periphery of colonies when compared to the center. As a consequence, its encoded protein GlaA is mainly secreted at the outer part of the colony. Here, multiple copies of amyR were introduced in A. niger. Most transformants over-expressing this regulatory gene of amylolytic genes still displayed heterogeneous glaA expression and GlaA secretion. However, heterogeneity was abolished in transformant UU-A001.13 by expressing glaA and secreting GlaA throughout the mycelium. Sequencing the genome of UU-A001.13 revealed that transformation had been accompanied by deletion of part of the fluG gene and disrupting its 3′ end by integration of a transformation vector. Inactivation of fluG in the wild-type background of A. niger also resulted in breakdown of starch under the whole colony. Asexual development of the ∆fluG strain was not affected, unlike what was previously shown in Aspergillus nidulans. Genes encoding proteins with a signal sequence for secretion, including part of the amylolytic genes, were more often downregulated in the central zone of maltose-grown ∆fluG colonies and upregulated in the intermediate part and periphery when compared to the wild-type. Together, these data indicate that FluG of A. niger is a repressor of secretion.

Keywords

Fungus Conidiogenesis Asexual development Aspergillus fluG Secretion Heterogeneity 

Notes

Acknowledgments

We would like to thank Dr. AFJ Ram and Dr. B Nitsche of Leiden University for providing us with the ∆fluG strain.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2014_321_MOESM1_ESM.docx (241 kb)
Supplementary material 1 (DOCX 241 kb)
10482_2014_321_MOESM2_ESM.docx (145 kb)
Supplementary material 2 (DOCX 145 kb)

References

  1. Andersen MR, Salazar MP, Schaap PJ, van de Vondervoort PJ, Culley D, Thykaer J, Frisvad JC, Nielsen KF, Albang R, Albermann K, Berka RM, Braus GH, Braus-Stromeyer SA, Corrochano LM, Dai Z, van Dijck PW, Hofmann G, Lasure LL, Magnuson JK, Menke H, Meijer M, Meijer SL, Nielsen JB, Nielsen ML, van Ooyen AJ, Pel HJ, Poulsen L, Samson RA, Stam H, Tsang A, van den Brink JM, Atkins A, Aerts A, Shapiro H, Pangilinan J, Salamov A, Lou Y, Lindquist E, Lucas S, Grimwood J, Grigoriev IV, Kubicek CP, Martinez D, van Peij NN, Roubos JA, Nielsen J, Baker SE (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21:885–897PubMedCentralPubMedCrossRefGoogle Scholar
  2. Battaglia E, Visser L, Nijssen A, van Veluw GJ, Wösten HA, de Vries RP (2011) Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales. Stud Mycol 69:31–38PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bos CJ, Debets AJ, Swart K, Huybers A, Kobus G, Slakhorst SM (1988) Genetic analysis and the construction of master strains for assignment of genes to six linkage groups in Aspergillus niger. Curr Genet 14:437–443PubMedCrossRefGoogle Scholar
  4. Conesa A, Punt PJ, van Luijk N, van den Hondel CAMJJ (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33:155–171PubMedCrossRefGoogle Scholar
  5. de Bekker C, Wiebenga A, Aguilar G, Wösten HAB (2009) An enzyme cocktail for efficient protoplast formation in Aspergillus niger. J Microbiol Methods 76:305–306PubMedCrossRefGoogle Scholar
  6. de Bekker C, van Veluw GJ, Vinck A, Wiebenga LA, Wösten HAB (2011) Heterogeneity of Aspergillus niger microcolonies in liquid shaken cultures. Appl Environ Microbiol 77:1263–1267PubMedCentralPubMedCrossRefGoogle Scholar
  7. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21PubMedCentralPubMedCrossRefGoogle Scholar
  8. Emri T, Molnár Z, Pusztahelyi T, Varecza Z, Pócsi I (2005) The FluG-BrlA pathway contributes to the initialisation of autolysis in submerged Aspergillus nidulans cultures. Mycol Res 109:757–763PubMedCrossRefGoogle Scholar
  9. Hatakeyama R, Nakahama T, Higuchi Y, Kitamoto K (2007) Light represses conidiation in koji mold Aspergillus oryzae. Biosci Biotechnol Biochem 71:1844–1849PubMedCrossRefGoogle Scholar
  10. Houbraken J, de Vries RP, Samson RA (2014) Modern taxonomy of biotechnologically important Aspergillus and penicillium species. Adv Appl Microbiol 86:199–249PubMedCrossRefGoogle Scholar
  11. Jalving R, van de Vondervoort PJ, Visser J, Schaap PJ (2000) Characterization of the kexin-like maturase of Aspergillus niger. Appl Environ Microbiol 66:363–368PubMedCentralPubMedCrossRefGoogle Scholar
  12. Kelly JM, Hynes MJ (1985) Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J 4:475–479PubMedCentralPubMedGoogle Scholar
  13. Krijgsheld P, Wösten HAB (2013) Transcriptome analysis of zones of colonies of the Δflba strain of Aspergillus niger. Fungal Genom Biol 3:109CrossRefGoogle Scholar
  14. Krijgsheld P, Altelaar AF, Post H, Ringrose JH, Müller WH, Heck AJ, Wösten HAB (2012) Spatially resolving the secretome within the mycelium of the cell factory Aspergillus niger. J Proteome Res 11:2807–2818PubMedCrossRefGoogle Scholar
  15. Krijgsheld P, Bleichrodt R, van Veluw GJ, Wang F, Müller WH, Dijksterhuis J, Wösten HAB (2013a) Development in Aspergillus. Stud Mycol 74:1–29PubMedCentralPubMedCrossRefGoogle Scholar
  16. Krijgsheld P, Nitsche BM, Post H, Levin AM, Müller WH, Heck AJ, Ram AF, Altelaar AF, Wösten HAB (2013b) Deletion of flbA results in increased secretome complexity and reduced secretion heterogeneity in colonies of Aspergillus niger. J Proteome Res 12:1809–1819CrossRefGoogle Scholar
  17. Kusters-van Someren MA, Harmsen JA, Kester HC, Visser J (1991) Structure of the Aspergillus niger pelA gene and its expression in Aspergillus niger and Aspergillus nidulans. Curr Genet 20:293–299PubMedCrossRefGoogle Scholar
  18. Lee BN, Adams TH (1994) The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev 8:641–651PubMedCrossRefGoogle Scholar
  19. Lee BN, Adams TH (1996) fluG and flbA function interdependently to initiate conidiophore development in Aspergillus nidulans through brlA beta activation. EMBO J 15:299–309PubMedCentralPubMedGoogle Scholar
  20. Lenouvel F, van de Vondervoort PJ, Visser J (2002) Disruption of the Aspergillus niger argB gene: a tool for transformation. Curr Genet 41:425–432PubMedCrossRefGoogle Scholar
  21. Levin AM, de Vries RP, Conesa A, de Bekker C, Talon M, Menke HH, van Peij NN, Wösten HAB (2007a) Spatial differentiation in the vegetative mycelium of Aspergillus niger. Eukaryot Cell 6:2311–2322PubMedCentralPubMedCrossRefGoogle Scholar
  22. Levin AM, de Vries RP, Wösten HAB (2007b) Localization of protein secretion in fungal colonies using a novel culturing technique; the ring-plate system. J Microbiol Methods 69:399–401PubMedCrossRefGoogle Scholar
  23. Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B (2012) RobiNA: a user-friendly, integrated software solution for RNA-seq-based transcriptomics. Nucleic Acids Res 40:622–627CrossRefGoogle Scholar
  24. Mah JH, Yu JH (2006) Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryot Cell 5:1585–1595PubMedCentralPubMedCrossRefGoogle Scholar
  25. Meyer V, Ram AFJ, Punt PJ (2010) Genetics, genetic manipulation, and approaches to strain improvement of filamentous fungi. Genetics, genetic manipulation, and approaches to strain improvement of filamentous fungi. ASM press, Washington, D.CGoogle Scholar
  26. Mullaney EJ, Hamer JE, Roberti KA, Yelton MM, Timberlake WE (1985) Primary structure of the trpC gene from Aspergillus nidulans. Mol Gen Genet 199:37–45PubMedCrossRefGoogle Scholar
  27. Nitsche BM, Crabtree J, Cerqueira GC, Meyer V, Ram AF, Wortman JR (2011) New resources for functional analysis of omics data for the genus Aspergillus. BMC Genom 12:486CrossRefGoogle Scholar
  28. Ogawa M, Tokuoka M, Jin FJ, Takahashi T, Koyama Y (2010) Genetic analysis of conidiation regulatory pathways in koji-mold Aspergillus oryzae. Fungal Genet Biol 47:10–18PubMedCrossRefGoogle Scholar
  29. Otto TD, Dillon GP, Degrave WS, Berriman M (2011) RATT: rapid annotation transfer tool. Nucleic Acids Res 39:e57PubMedCentralPubMedCrossRefGoogle Scholar
  30. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d’Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wösten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnol 25:221–231CrossRefGoogle Scholar
  31. Petersen KL, Lehmbeck J, Christensen T (1999) A new transcriptional activator for amylase genes in Aspergillus. Mol Gen Genet 262:668–676PubMedCrossRefGoogle Scholar
  32. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CAMJJ (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124PubMedCrossRefGoogle Scholar
  33. Punt PJ, Dingemanse MA, Kuyvenhoven A, Soede RD, Pouwels PH, van den Hondel CA (1990) Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene 93:101–109PubMedCrossRefGoogle Scholar
  34. Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel CAMJJ (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206PubMedCrossRefGoogle Scholar
  35. Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 18:255–259PubMedCrossRefGoogle Scholar
  36. Schuren FHJ, Harmsen MC, Wessels JGH (1993) A homologous gene-reporter system for the basidiomycete Schizophyllum commune based on internally deleted homologous genes. Mol Gen Genet 238:91–96PubMedGoogle Scholar
  37. Schuster E, Dunn-Coleman N, Frisvad JC, Van Dijck PW (2002) On the safety of Aspergillus niger-a review. Appl Microbiol Biotechnol 59:426–435PubMedCrossRefGoogle Scholar
  38. Seo JA, Guan Y, Yu JH (2006) FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics 172:1535–1544PubMedCentralPubMedCrossRefGoogle Scholar
  39. Szilágyi M, Kwon NJ, Dorogi C, Pócsi I, Yu JH, Emri T (2010) The extracellular beta-1,3-endoglucanase EngA is involved in autolysis of Aspergillus nidulans. J Appl Microbiol 109:1498–1508PubMedGoogle Scholar
  40. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46–53PubMedCrossRefGoogle Scholar
  41. van Peer AF, de Bekker C, Vinck A, Wösten HAB, Lugones LG (2009) Phleomycin increases transformation efficiency and promotes single integrations in Schizophyllum commune. Appl Environ Microbiol 75:1243–1247PubMedCentralPubMedCrossRefGoogle Scholar
  42. vanKuyk PA, Benen JA, Wösten HAB, Visser J, de Vries RP (2011) A broader role for AmyR in Aspergillus niger: regulation of the utilisation of d-glucose or d-galactose containing oligo- and polysaccharides. Appl Microbiol Biotechnol 93:285–293PubMedCentralPubMedCrossRefGoogle Scholar
  43. Vinetskiĭ IuP, Rozhkova AM, Sereda AS, Tsurikova NV, Nurtaeva AK, Semenova MV, Zorov IN, Sinitsyn AP (2010) Increase in glucoamylase productivity of Aspergillus awamori strain by combination of radiating mutagenesis and plasmid transformation methods. Prikl Biokhim Mikrobiol 46:685–692PubMedGoogle Scholar
  44. Vishniac W, Santer M (1957) The thiobacilli. Bacteriol Rev 21:195–213PubMedCentralPubMedGoogle Scholar
  45. Wang F, Dijksterhuis J, Wyatt T, Wösten HAB, Bleichrodt R (2014) VeA of Aspergillus niger increases spore dispersing capacity by impacting conidiophore architecture. Antonie van Leeuwenhoek. doi:10.1007/s10482-014-0316-z
  46. Wösten HAB, Moukha SM, Sietsma JH, Wessels JGH (1991) Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137:2017–2023PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fengfeng Wang
    • 1
  • Pauline Krijgsheld
    • 1
  • Marc Hulsman
    • 2
  • Charissa de Bekker
    • 1
  • Wally H. Müller
    • 3
  • Marcel Reinders
    • 2
  • Ronald P. de Vries
    • 1
    • 4
  • Han A. B. Wösten
    • 1
    Email author
  1. 1.Microbiology and Kluyver Centre for Genomics of Industrial FermentationUtrecht UniversityUtrechtThe Netherlands
  2. 2.Delft Bioinformatics Lab and Kluyver Centre for Genomics of Industrial Fermentation, Department of Electrical Engineering, Mathematics and Computer ScienceDelft University of TechnologyDelftThe Netherlands
  3. 3.Biomolecular ImagingUtrecht UniversityUtrechtThe Netherlands
  4. 4.CBS-KNAW Fungal Biodiversity CentreUtrechtThe Netherlands

Personalised recommendations