Antonie van Leeuwenhoek

, Volume 107, Issue 1, pp 119–132 | Cite as

Ecophysiological diversity of a novel member of the genus Alteromonas, and description of Alteromonas mediterranea sp. nov.

  • Elena P. Ivanova
  • Mario López-Pérez
  • Mila Zabalos
  • Song Ha Nguyen
  • Hayden K. Webb
  • Jason Ryan
  • Kiril Lagutin
  • Mikhail Vyssotski
  • Russell J. Crawford
  • Francisco Rodriguez-Valera
Original Paper

Abstract

Nine non-pigmented, motile, Gram-negative bacteria originally designated as Alteromonas macleodii deep-sea ecotypes, were isolated from seawater samples collected from four separate locations; two deep-sea sites in the Mediterranean Sea and surface water of the Aegean Sea and English Channel. The six strains studied in vitro were found to tolerate up to 20 % NaCl. The DNA–DNA relatedness between the deep-sea ecotype strains was found to be between 75 and 89 %, whilst relatedness with the validly named Alteromonas species was found to be between 31 and 69 %. The average nucleotide identity (ANI) amongst the deep-sea ecotype strains was found to be 98–100 %; the in silico genome-to-genome distance (GGD), 85–100 %; the average amino acid identity (AAI) of all conserved protein-coding genes, 95–100 %; and the strains possessed 30–32 of the Karlin’s genomic signature dissimilarity. The ANI between the deep-sea ecotype strains and A. macleodii ATCC 27126T and Alteromonas australica H 17T was found to be 80.6 and 74.6 %, respectively. A significant correlation was observed between the phenotypic data obtained in vitro and data retrieved in silico from whole genome sequences. The results of a phylogenetic study that incorporated a 16S rRNA gene sequence analysis, multilocus phylogenetic analysis (MLPA) and genomic analysis, together with the physiological, biochemical and chemotaxonomic data, clearly indicated that the group of deep-sea ecotype strains represents a distinct species within the genus Alteromonas. Based on these data, a new species, Alteromonas mediterranea, is proposed. The type strain is DET ( = CIP 110805T = LMG 28347T = DSM 17117T).

Keywords

Alteromonas mediterranea Marine bacteria Taxonomy Phylogeny Genomic taxonomy MLPA MALDI-TOF MS New species 

Supplementary material

10482_2014_309_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1470 kb)

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  2. Amaral GRS, Dias GM, Wellington-Oguri M, Chimetto L, Campeão ME, Thompson FL, Thompson CC (2014) Genotype to phenotype: identification of diagnostic vibrio phenotypes using whole genome sequences. Int J Syst Evol Microbiol 64:357–365PubMedCrossRefGoogle Scholar
  3. Azegami K, Nishiyama K, Watanabe Y, Kadota I, Ohuchi A, Fukazawa C (1987) Pseudomonas plantarii sp. nov., the causal agent of rice seeding blight. Int J Syst Evol Microbiol 37:144–152Google Scholar
  4. Baumann P, Baumann L (1981) The marine Gram-negative eubacteria; genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In: Starr MP, Starr MP, Stolp HG, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes a handbook on habitats, isolation, and identification of bacteria. Springer-Verlag, Berlin, pp 1302–1330Google Scholar
  5. Baumann P, Baumann L, Mandel M, Allen RD (1972) Taxonomy of aerobic marine eubacteria. J Bacteriol 110:402–429PubMedCentralPubMedGoogle Scholar
  6. Baumann P, Gauthier MJ, Baumann L (1984) Genus Alteromonas. Baumann, Baumann, Mandel and Allen 1972. In: Krieg NR, Holt JG (eds) Bergey`s Manual of Systematic Bacteriology. Williams & Wilkins Co, Baltimore, pp 243–354Google Scholar
  7. Chen YG, Xiao HD, Tang SK, Zhang YQ, Borrathybay E, Cui XL, Li WJ, Liu YQ (2009) Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 96:259–266CrossRefGoogle Scholar
  8. Chiu HH, Shieh WY, Lin SY, Tseng CM, Chiang PW, Wagner-Döbler I (2007) Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int J Syst Evol Microbiol 57:1209–1216PubMedCrossRefGoogle Scholar
  9. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403PubMedCentralPubMedCrossRefGoogle Scholar
  10. Didelot X, Lawson D, Darling A, Falush D (2010) Inference of homologous recombination in bacteria using whole-genome sequences. Genetics 186:1435–1449PubMedCentralPubMedCrossRefGoogle Scholar
  11. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  12. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  13. García-Martínez J, Acinas SG, Massana R, Rodríguez-Valera F (2002) Prevalence and microdiversity of Alteromonas macleodii-like microorganisms in different oceanic regions. Environ Microbiol 4:42–50PubMedCrossRefGoogle Scholar
  14. Gauthier G, Gauthier M, Christen R (1995) Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Evol Microbiol 45:755–761Google Scholar
  15. Gonzalez JM, Saiz-Jimenez C (2005) A simple fluorimetric method for the estimation of DNA-DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9:75–79PubMedCrossRefGoogle Scholar
  16. Goris J, Suzuki KI, De Vos P, Nakase T, Kersters K (1998) Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153CrossRefGoogle Scholar
  17. Hagström Å, Pinhassi J, Zweifel UL (2000) Biogeographical diversity among marine bacterioplankton. Aquatic Microb Ecol 21:231–244CrossRefGoogle Scholar
  18. Ivanova EP, Flavier S, Christen R (2004) Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54:1773–1788PubMedCrossRefGoogle Scholar
  19. Ivanova EP, Bowman JP, Lysenko AM, Zhukova NV, Gorshkova NM, Kuznetsova TA, Kalinovskaya NL, Shevchenko LS, Mikhailov VV (2005a) Erythrobacter vulgaris sp. nov., a novel organism isolated from the marine invertebrates. Syst Appl Microbiol 28:123–130PubMedCrossRefGoogle Scholar
  20. Ivanova EP, Bowman JP, Lysenko AM, Zhukova NV, Gorshkova NM, Sergeev AF, Mikhailov VV (2005b) Alteromonas addita sp. nov. Int J Syst Evol Microbiol 55:1065–1068PubMedCrossRefGoogle Scholar
  21. Ivanova EP, Ng HJ, Webb HK, Kurilenko VV, Zhukova NV, Mikhailov VV, Ponamoreva ON, Crawford RJ (2013) Alteromonas australica sp. nov., isolated from the Tasman Sea. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 103:877–884CrossRefGoogle Scholar
  22. Ivars-Martínez E, D’Auria G, Rodríguez-Valera F, Sánchez-Porro C, Ventosa A, Joint I, Mühling M (2008a) Biogeography of the ubiquitous marine bacterium Alteromonas macleodii determined by multilocus sequence analysis. Mol Ecol 17:4092–4106PubMedCrossRefGoogle Scholar
  23. Ivars-Martínez E, Martin-Cuadrado AB, D’Auria G, Mira A, Ferriera S, Johnson J, Friedman R, Rodriguez-Valera F (2008b) Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME J 2:1194–1212PubMedCrossRefGoogle Scholar
  24. Karlin S, Mrazek J, Campbell AM (1997) Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 179:3899–3913PubMedCentralPubMedGoogle Scholar
  25. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  26. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  27. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264PubMedCentralPubMedCrossRefGoogle Scholar
  28. López-López A, Bartual SG, Stal L, Onyshchenko O, Rodríguez-Valera F (2005) Genetic analysis of housekeeping genes reveals a deep-sea ecotype of Alteromonas macleodii in the Mediterranean Sea. Environ Microbiol 7:649–659PubMedCrossRefGoogle Scholar
  29. López-Pérez M, Gonzaga A, Martin-Cuadrado AB, Onyshchenko O, Ghavidel A, Ghai R, Rodriguez-Valera F (2012) Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. Sci Rep 2:696PubMedCentralPubMedCrossRefGoogle Scholar
  30. López-Pérez M, Gonzaga A, Rodriguez-Valera F (2013) Genomic diversity of “deep ecotype” Alteromonas macleodii isolates: evidence for pan-mediterranean clonal frames. Genome Biol Evol 5:1220–1232PubMedCentralPubMedCrossRefGoogle Scholar
  31. López-Pérez M, Gonzaga A, Ivanova EP, Rodriguez-Valera F (2014) Genomes of Alteromonas australica, a world apart. BMC Genomics 15:483PubMedCentralPubMedCrossRefGoogle Scholar
  32. Martínez-Checa F, Béjar V, Llamas I, del Moral A, Quesada E (2005) Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 55:2385–2390PubMedCrossRefGoogle Scholar
  33. Ng HJ, Webb HK, Crawford RJ, Malherbe F, Butt H, Knight R, Mikhailov VV, Ivanova EP (2013) Updating the taxonomic toolbox: classification of Alteromonas spp. using multilocus phylogenetic analysis and MALDI-TOF mass spectrometry. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 103:877–884CrossRefGoogle Scholar
  34. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131PubMedCentralPubMedCrossRefGoogle Scholar
  35. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  36. Sass AM, Sass H, Coolen MJL, Cypionka H, Overmann J (2001) Microbial communities in the chemocline of a hypersaline Deep-Sea Basin (Urania Basin, Mediterranean Sea). Appl Environ Microbiol 67:5392–5402PubMedCentralPubMedCrossRefGoogle Scholar
  37. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt F (ed) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654Google Scholar
  38. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  39. Van Landschoot A, De Ley J (1983) Intra- and intergeneric similarities of the rRNA cistrons of Alteromonas, Marinomonas (gen. nov.) and some other gram-negative bacteria. J Gen Micorbiol 129:3057–3074Google Scholar
  40. Van Trappen S, Tan TL, Yang J, Mergaert J, Swings J (2004) Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 54:1157–1163PubMedCrossRefGoogle Scholar
  41. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A, Faimali M, De Vos P, Vandamme P (2008) Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al. 1972 (Approved Lists 1980). Int J Syst Evol Microbiol 58:2589–2596PubMedCrossRefGoogle Scholar
  42. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the Ad-hoc-committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464Google Scholar
  43. Yoon JH, Yeo SH, Oh TK, Park YH (2004) Alteromonas litorea sp. nov., a sllightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54:1197–1201PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Elena P. Ivanova
    • 1
  • Mario López-Pérez
    • 2
  • Mila Zabalos
    • 2
  • Song Ha Nguyen
    • 1
  • Hayden K. Webb
    • 1
  • Jason Ryan
    • 3
  • Kiril Lagutin
    • 3
  • Mikhail Vyssotski
    • 3
  • Russell J. Crawford
    • 1
  • Francisco Rodriguez-Valera
    • 2
  1. 1.Swinburne University of TechnologyHawthornAustralia
  2. 2.Universidad Miguel HernandezSan Juan De AlicanteSpain
  3. 3.Callaghan InnovationLower HuttNew Zealand

Personalised recommendations