Advertisement

Antonie van Leeuwenhoek

, Volume 106, Issue 6, pp 1167–1184 | Cite as

Ophiostomatoid fungi including two new fungal species associated with pine root-feeding beetles in northern Spain

  • Pedro Romón
  • Z. Wilhelm De Beer
  • Mercedes Fernández
  • Julio Diez
  • Brenda D. Wingfield
  • Michael J. Wingfield
Original Paper

Abstract

Many bark beetles live in a symbiosis with ophiostomatoid fungi but very little is known regarding these fungi in Spain. In this study, we considered the fungi associated with nine bark beetle species and one weevil infesting two native tree species (Pinus sylvestris and Pinus nigra) and one non-native (Pinus radiata) in Cantabria (Northern Spain). This included examination of 239 bark beetles or their galleries. Isolations yielded a total of 110 cultures that included 11 fungal species (five species of Leptographium sensu lato including Leptographium absconditum sp. nov., five species of Ophiostoma sensu lato including Ophiostoma cantabriense sp. nov, and one species of Graphilbum). The most commonly encountered fungal associates of the bark beetles were Grosmannia olivacea, Leptographium procerum, and Ophiostoma canum. The aggressiveness of the collected fungal species was evaluated using inoculations on two-year-old P. radiata seedlings. Leptographium wingfieldii, Leptographium guttulatum, and Ophiostoma ips were the only species capable of causing significant lesions.

Keywords

Ophiostoma Leptographium Root-feeding beetles Two new fungal species 

Notes

Acknowledgments

We acknowledge the University of Pretoria, the National Research Foundation of South Africa (NRF), the Department of Education, Universities and Research of Basque Government, members of Tree Protection Co-operative Programme (TPCP), and the NRF/DST Centre of Excellence in Tree Health Biotechnology (CTHB) for financial support. We also acknowledge the technical and logistical support of Ms. Milagros Vallejo of the Cantabria Government and Ms. Izette Greyling, Mr. Darryl Herron and Mr. Johan van der Linde of the Forestry and Agricultural Biotechnology Institute (FABI).

References

  1. Aghayeva DN, Wingfield MJ, De Beer ZW, Kirisits T (2004) Two new Ophiostoma species with Sporothrix anamorphs from Austria and Azerbaijan. Mycologia 96:866–878PubMedCrossRefGoogle Scholar
  2. Alexander SA, Horner WE, Lewis KJ (1988) Leptographium procerum as a pathogen of pines. In: Harrington TC, Cobb F (eds) Leptographium root diseases on conifers. APS Press, St. Paul, pp 97–112Google Scholar
  3. Balachowsky A (1949) Coleoptera, Scolytides. Lechevalier P (ed), 50, Faune de France, ParisGoogle Scholar
  4. Bueno A, Diez JJ, Fernández MM (2010) Ophiostomatoid fungi transported by Ips sexdentatus (Coleoptera; Scolytidae) in Pinus pinaster in NW Spain. Silva Fenn 44:387–397CrossRefGoogle Scholar
  5. Camargo JA (1993) Must dominance increase with the number of subordinate species in competitive interactions? J Theor Biol 161:537–542CrossRefGoogle Scholar
  6. Christiansen E, Solheim H (1990) The bark beetle-associated blue-stain fungus Ophiostoma polonicum can kill various spruces and Douglas fir. Eur J For Pathol 20:436–446CrossRefGoogle Scholar
  7. De Ana Magán FJF (1982) Las hogueras en el monte y el ataque del hongo Leptographium gallaeciae sp. nv. sobre P. pinaster Ait. Bol Serv Plagas 8:69–92Google Scholar
  8. De Ana Magán FJF (1983) Enfermedad del Pinus pinaster en Galicia Leptographium gallaeciae F. Magan sp. nov. An INIA/Ser Forestal 7:165–169Google Scholar
  9. De Beer ZW, Wingfield MJ (2013) Emerging lineages in the Ophiostomatales. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) The ophiostomatoid fungi: expanding frontiers, CBS biodiversity series 12. CBS Press, Utrecht, pp 21–46Google Scholar
  10. De Beer ZW, Harrington TC, Vismer HF, Wingfield BD, Wingfield MJ (2003) Phylogeny of the Ophiostoma stenocerasSporothrix schenckii complex. Mycologia 95:434–441PubMedCrossRefGoogle Scholar
  11. De Beer ZW, Seifert KA, Wingfield MJ (2013) A nomenclator for ophiostomatoid genera and species in the Ophiostomatales and Microascales. In: Seifert KA, De Beer ZW, Wingfield MJ (eds) The ophiostomatoid fungi: expanding frontiers, CBS biodiversity series 12. CBS Press, Utrecht, pp 243–320Google Scholar
  12. De Meyer EM, De Beer ZW, Summerbell RC, Moharram AM, de Hoog GS, Vismer HF, Wingfield MJ (2008) Taxonomy and phylogeny of new wood- and soil-inhabiting Sporothrix species in the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia 100:647–661PubMedCrossRefGoogle Scholar
  13. Duong TA, De Beer ZW, Wingfield BD, Wingfield MJ (2012) Phylogeny and taxonomy of species in the Grosmannia serpens complex. Mycologia 104:715–732PubMedCrossRefGoogle Scholar
  14. Felsenstein J (1985) Confidence limits on phylogenetics: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  15. Fernández MMF, García AE, Lieutier F (2004) Effects of various densities of Ophiostoma ips inoculations on Pinus sylvestris in north-western Spain. For Path 34:213–223CrossRefGoogle Scholar
  16. Gil L, Pajares JA (1986) Los escolitidos de las coníferas en la península ibérica. Monografías INIA n.53. MAPA. Madrid, p 194Google Scholar
  17. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedPubMedCentralGoogle Scholar
  18. Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F, Posada D (2010) ALTER: program-oriented format conversion of DNA and protein alignments. Nucleic Acids Research. Web Server issue. ISSN: 0305-1048. doi:  10.1093/nar/qkq321
  19. Grüne S (1979) Handbuch zur bestimmung der europaischen Borkenkafer—brief illustrated key to European bark beetles. Schaper, HannoverGoogle Scholar
  20. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2006) New algorithms and methods to estimate maximum-likehood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefGoogle Scholar
  21. Harrington TC, Cobb FW (1988) Leptographium root diseases on conifers. APS Press, St PaulGoogle Scholar
  22. Hill TCJ, Kerry A, Walsh JA, Harris B, Moffett F (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43:1–11PubMedCrossRefGoogle Scholar
  23. Jacobs K, Wingfield MJ (2001) Leptographium species, tree pathogens, insects associates and agents of blue stain. APS Press, St. PaulGoogle Scholar
  24. Jacobs K, Wingfield MJ, Coetsee C, Kirisits T, Wingfield BD (2001) Leptographium guttulatum sp. nov., a new species from spruce and pine in Europe. Mycologia 93:380–388CrossRefGoogle Scholar
  25. Jacobs K, Bergdahl DR, Wingfield MJ, Halik S, Seifert KA, Bright DE, Wingfield BD (2004) Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycol Res 108:411–418PubMedCrossRefGoogle Scholar
  26. Jacobs K, Solheim H, Wingfield BD, Wingfield MJ (2005) Taxonomic re-evaluation of Leptographium lundbergii based on DNA sequence comparisons and morphology. Mycol Res 109:1141–1161CrossRefGoogle Scholar
  27. Jankowiak R (2006) Fungi associated with Tomicus piniperda in Poland and assessment of their virulence using Scots pine seedlings. Ann For Sci 63:801–808CrossRefGoogle Scholar
  28. Jankowiak R, Bilański P (2013a) Diversity of ophiostomatoid fungi associated with the large pine weevil, Hylobius abietis and infested Scots pine seedlings in Poland. Ann For Sci 70:391–402CrossRefGoogle Scholar
  29. Jankowiak R, Bilański P (2013b) Ophiostomatoid fungi associated with root-feeding bark beetles on Scots pine in Poland. For Path 43:422–428Google Scholar
  30. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Ac Res 30:3059–3066CrossRefGoogle Scholar
  31. Kirisits T (2004) Fungal associates of European bark beetles with special emphasis on ophiostomatoid fungi. In: Lieutier F, Day KR, Battisti A, Grégoire J-C, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Dordrecht, pp 181–236CrossRefGoogle Scholar
  32. Lackner AL, Alexander SA (1982) Occurrence and pathogenicity of Verticicladiella procera in Christmas tree plantations in Virginia. Plant Dis 66:211–212CrossRefGoogle Scholar
  33. Langström B, Solheim H, Hellqvist C, Krokene P (2001) Host resistance in defoliated pine: effects of single and mass inoculations using bark beetle-associated blue-stain fungi. Agric For Entomol 3:211–216CrossRefGoogle Scholar
  34. Lieutier F, Yart A, Garcia J, Ham MC, Morelet M, Levieux J (1989) Champignons phytopathogènes associés à deux coléoptères scolytidae du pin sylvestre (Pinus sylvestris L.) et étude préliminaire de leur agressivité envers l’hôte. Ann For Sci 46:201–216CrossRefGoogle Scholar
  35. Lieutier F, Yart A, Ye H, Sauvard D, Gallois V (2004) Variations in growth and virulence of Leptographium wingfieldii Morelet, a fungus associated with the bark beetle Tomicus piniperda L. Ann For Sci 61:45–53CrossRefGoogle Scholar
  36. López S, Romón P, Iturrondobeitia JC, Goldarazena A (2007) Los escolítidos de las coníferas del País Vasco: guía práctica para su identificación y control. ISBN 978-84-457-2650-1Google Scholar
  37. Lu Q, Decock C, Zhang XY, Maraite H (2009) Ophiostomatoid fungi (Ascomycota) associated with Pinus tabuliformis infested by Dendroctonus valens (Coleoptera) in northern China and an assessment of their pathogenicity on mature trees. Antonie Van Leeuwenhoek 96:275–293PubMedCrossRefGoogle Scholar
  38. Marimon R, Cano J, Gené J, Sutton DA, Kawasaki M, Guarro J (2007) Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J Clin Microbiol 45:3198–3206PubMedCrossRefPubMedCentralGoogle Scholar
  39. Marmolejo JG, Butin H (1990) New conifer-inhabiting species of Ophiostoma and Ceratocystiopsis (Ascomycetes, Microascales) from Mexico. Sydowia 42:193–199Google Scholar
  40. Mathiesen A (1950) Über einige mit Borkenkäfern assoziierten Bläuepilze in Schweden. Oikos 2:275–308CrossRefGoogle Scholar
  41. Mathiesen-Käärik A (1953) Eine Übersicht über die gewöhnlichsten mit Borkenkäfern assoziierten Bläuepilze in Schweden und einige für Schweden neue Bläuepilze. Meddn St Skogforsk 43:1–74Google Scholar
  42. O’Donnell K (2000) Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92:919–938CrossRefGoogle Scholar
  43. Owen DR, Lindahl KQ Jr, Wood DL, Parmeter JR Jr (1987) Pathogenicity of fungi isolated from Dendroctonus valens, D. brevicomis, and D. ponderosae to ponderosa pine seedlings. Phytopathology 77:631–636CrossRefGoogle Scholar
  44. Parmeter JRJr, Slaughter GW, Chen MM, Wood DL, Stubbs HA (1989) Single and mixed inoculations of ponderosa pine with fungal associates of Dendroctonus spp. Phytopathology 79:786–792CrossRefGoogle Scholar
  45. Pestaña M, Santolamazza-Carbone S (2010) Mutual benefit interactions between banded pine weevil Pissodes castaneus and blue-stain fungus Leptographium serpens in maritime pine. Agric For Entomol 12:371–379CrossRefGoogle Scholar
  46. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  47. Raffa KF, Smalley EB (1988) Response of red and jack pines to inoculations with microbial associates of the pine engraver, Ips pini (Coleoptera: scolytidae). Can J For Res 18:581–586CrossRefGoogle Scholar
  48. Redfern DB, Stoakley JT, Steele H, Minter DW (1987) Dieback and death of larch caused by Ceratocystis laricicola sp. nov. following attack by Ips cembrae. Plant Pathol 36:467–480CrossRefGoogle Scholar
  49. Roets F, De Beer ZW, Wingfield MJ, Crous PW, Dreyer LL (2008) Ophiostoma gemellus and Sporothrix variecibatus from mites infesting Protea infructescences in South Africa. Mycologia 100:496–510PubMedCrossRefGoogle Scholar
  50. Roets F, Wingfield BD, De Beer ZW, Wingfield MJ, Dreyer LL (2010) Two new Ophiostoma species from Protea caffra in Zambia. Persoonia 24:18–28PubMedCrossRefPubMedCentralGoogle Scholar
  51. Romón P, Zhou XD, Iturrondobeitia JC, Wingfield MJ, Goldarazena A (2007) Ophiostoma species (Ascomycetes: ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain. Can J Microbiol 53:756–767PubMedCrossRefGoogle Scholar
  52. Romón P, De Beer ZW, Zhou XD, Duong TA, Wingfield BD, Wingfield MJ (2014) Multigene phylogenies of ophiostomataceae ascomycetes associated with Monterey pine bark beetles in Spain reveal three new fungal species. Mycologia 106:119–132PubMedCrossRefGoogle Scholar
  53. Ronquist F, Huelsenbeck JP (2003) MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  54. Seifert KA (1993) Sapstain of commercial lumber by species of Ophiostoma and Ceratocystis. In: Wingfield MJ, Seifert KA, Webber JF (eds) Ceratocystis and Ophiostoma: taxonomy, ecology, and pathogenicity. APS Press, St Paul, pp 141–151Google Scholar
  55. Six DL, Wingfield MJ (2011) The role of phytopathogenicity in bark beetle–fungus symbioses: a challenge to the classic paradigm. Ann Rev Entomol 56:255–272CrossRefGoogle Scholar
  56. Solheim H, Krokene P, Langström B (2001) Effects of growth and virulence of associated blue-stain fungi on host colonization behaviour of the pine shoot beetles Tomicus minor and T. piniperda. Plant Pathol 50:111–116CrossRefGoogle Scholar
  57. Swofford DL (2003) PAUP (Phylogenetic Analysis Using Parsimony), version 4.0b10. Sinauer Associates, MassachusettsGoogle Scholar
  58. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefPubMedCentralGoogle Scholar
  59. Villarreal M, Rubio V, De Troya MT, Arenal F (2005) A new Ophiostoma species isolated from Pinus pinaster in the Iberian Peninsula. Mycotaxon 92:259–268Google Scholar
  60. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and application. Academic Press, New York, pp 315–322CrossRefGoogle Scholar
  61. Wingfield MJ, Gibbs JN (1991) Leptographium and Graphium species associated with pine-infesting bark beetles in England. Mycol Res 95:1257–1260CrossRefGoogle Scholar
  62. Yamaoka Y, Swanson RH, Hiratsuka Y (1990) Inoculation of lodgepole pine with four blue-stain fungi associated with mountain pine beetle, monitored by a heat pulse velocity (HPV) instrument. Can J For Res 20:31–36CrossRefGoogle Scholar
  63. Yamaoka Y, Wingfield MJ, Takahashi I, Solheim H (1997) Ophiostomatoid fungi associated with the spruce bark beetle Ips typographus f. japonicus in Japan. Mycol Res 101:1215–1227CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pedro Romón
    • 1
  • Z. Wilhelm De Beer
    • 2
  • Mercedes Fernández
    • 3
  • Julio Diez
    • 4
  • Brenda D. Wingfield
    • 1
  • Michael J. Wingfield
    • 2
  1. 1.Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  2. 2.Department of Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  3. 3.Department of Agroforestry SciencesUniversity of ValladolidPalenciaSpain
  4. 4.Department of Plant Production and Forest ResourcesUniversity of ValladolidPalenciaSpain

Personalised recommendations