Antonie van Leeuwenhoek

, Volume 106, Issue 6, pp 1147–1155 | Cite as

Bacillus cihuensis sp. nov., isolated from rhizosphere soil of a plant in the Cihu area of Taiwan

  • Bo Liu
  • Guo-Hong Liu
  • Cetin Sengonca
  • Peter Schumann
  • Ming-Kuang Wang
  • Jian-Yang Tang
  • Mei-Chun Chen
Original Paper


A Gram-positive, moderately halotolerant, rod-shaped, spore forming bacterium, designated strain FJAT-14515T was isolated from a soil sample in Cihu area, Taoyuan County, Taiwan. The strain grew at 10–35 °C (optimum at 30 °C), pH 5.7–9.0 (optimum at pH 7.0) and at salinities of 0–5 % (w/v) NaCl (optimum at 1 % w/v). The diagnostic diamino acid of the peptidoglycan of the isolated strain was meso-diaminopimelic acid and major respiratory isoprenoid quinone was MK-7. Major cellular fatty acids were anteiso-C15:0 (40.6 %), iso-C15:0 (20.7 %) and the DNA G+C content of strain FJAT-14515T was 37.1 mol %. A phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FJAT-14515T belongs to the genus Bacillus, and was most closely related to the reference strains of Bacillus muralis DSM 16288T (97.6 %) and Bacillus simplex DSM 1321T (97.5 %). Levels of DNA–DNA relatedness between strain FJAT-14515T and the reference strains of B. muralis DSM 16288T and B. simplex DSM 1321T were 27.9 % ± 3.32 and 44.1 % ± 0.57, respectively. Therefore, on the basis of phenotypic, chemotaxonomic and genotypic properties, strain FJAT-14515T represents a novel species of the genus Bacillus, for which the name Bacillus cihuensis sp. nov. is proposed. The type strain is FJAT-14515T (=DSM 25969T = CGMCC 1.12697T).


Bacillus cihuensis DNA–DNA relatedness Phylogenetic analysis Polyphasic taxonomy 



We thank Professor J. P. Euzéby for his suggestion on the spelling of the specific epithet. We thank also the Agricultural Bioresources Institute, Fujian Academy of Agricultural Sciences, PR China, and the international cooperation project of Chinese Ministry of Science and Technology (2012DFA31120), Natural Science Foundation of China (NSFC) (31370059), 948 project of Chinese Ministry of Agriculture (2011-G25), 973 program earlier research project (2011CB111607) and project of agriculture science and technology achievement transformation (2010GB2C400220) for the supporting, respectively.

Supplementary material

10482_2014_284_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOC 1061 kb)


  1. Albert RA, Archambault J, Rosselló-Mora R, Tindall BJ, Matheny M (2005) Bacillus acidicola sp. nov., a novel mesophilic, acidophilic species isolated from acidic Sphagnum peat bogs in Wisconsin. Int J Syst Evol Microbiol 55:2125–2130PubMedCrossRefGoogle Scholar
  2. Albuquerque L, Tiago I, Taborda M, Nobre MF, Veríssimo A, da Costa MS (2008) Bacillus isabeliae sp. nov., a halophilic bacterium isolated from a sea salt evaporation pond. Int J Syst Evol Microbiol 58:226–230PubMedCrossRefGoogle Scholar
  3. Atlas RM (1993) Handbook of microbiological media. Edited by LC Parks, CRC Press, Boca RatonGoogle Scholar
  4. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993PubMedPubMedCentralGoogle Scholar
  5. Chen YG, Cui XL, Pukall R, Li HM, Yang YL, Xu LH, Wen ML, Peng Q, Jiang CL (2007) Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 57:2327–2332PubMedCrossRefGoogle Scholar
  6. Chen YG, Zhang YQ, Chen QH, Klenk HP, He JW, Tang SK, Cui XL, Li WJ (2011) Bacillus xiaoxiensis sp. nov., a slightly halophilic bacterium isolated from non-saline forest soil. Int J Syst Evol Microbiol 61:2095–2100PubMedCrossRefGoogle Scholar
  7. Chou JH, Chou YJ, Lin KY, Sheu SY, Sheu DS, Arun AB, Young CC, Chen WM (2007) Paenibacillus fonticola sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 57:1346–1350PubMedCrossRefGoogle Scholar
  8. Cohn F (1872) Untersuchungen über Bakterien. Beitrage zur Biologie der Pflanzen, 1 Heft 2, 127–224Google Scholar
  9. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230PubMedCrossRefGoogle Scholar
  10. Cowan ST, Steel KJ (1965) Manual for the identification of medical bacteria. Cambridge University Press, LondonGoogle Scholar
  11. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  12. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  13. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  14. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  15. Gao JL, Sun JG, Li Y, Wang ET, Chen WX (1994) Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Bacteriol 44:151–158CrossRefGoogle Scholar
  16. Goodfellow M, Stainsby FM, Davenport R, Chun J, Curtis T (1998) Activated sludge foaming: the true extent of actinomycete diversity. Water Sci Technol 37:511–519CrossRefGoogle Scholar
  17. Groth I, Schumann P, Weiss N, Martin K, Rainey FA (1996) Agrococcus jenensis gen nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Evol Microbiol 46:234–239Google Scholar
  18. Heyrman J, Vanparys B, Logan NA, Balcaen A, Rodríguez-Díaz M, Felske A, De Vos P (2004) Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the drentse a grasslands. Int J Syst Evol Microbiol 54:47–57PubMedCrossRefGoogle Scholar
  19. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (eds) (1985) Genetic manipulation of streptomyces. A laboratory manual. John Innes Foundation, NorwichGoogle Scholar
  20. Huß VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192PubMedCrossRefGoogle Scholar
  21. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, pp 21–132CrossRefGoogle Scholar
  22. Kämpfer P (1994) Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98CrossRefGoogle Scholar
  23. Kämpfer P, Arun AB, Busse HJ, Lange S, Young CC, Chen WM, Syed AA, Rekha PD (2011) Virgibacillus soli sp. nov., isolated from mountain soil. Syst Appl Microbiol 61:275–280Google Scholar
  24. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  25. Kim M, Oh H-S, Park S-C, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351Google Scholar
  26. Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR, Park YH (2001) Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov. and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51:1491–1498PubMedGoogle Scholar
  27. Lee FL, Kuo HP, Tai CJ, Yokota A, Lo CC (2007) Paenibacillus taiwanensis sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 57:1351–1354PubMedCrossRefGoogle Scholar
  28. Lee FL, Tien CJ, Tai CJ, Wang LT, Liu YC, Chern LL (2008) Paenibacillus taichungensis sp. nov., from soil in Taiwan. Int J Syst Evol Microbiol 58:2640–2645PubMedCrossRefGoogle Scholar
  29. Liu GH, Liu B, Tang WQ, Che JM, Lin YZ, Zhu YJ, Su MX, Tang JY (2014) Genome sequence of Bacillus sp. strain FJAT-14515. Genome Announc 2:e01123-13PubMedCrossRefPubMedCentralGoogle Scholar
  30. Logan NA, Lebbe L, Verhelst A, Goris J, Forsyth G, Rodríguez-Días M, Heyndrickx M, De Vos P (2004) Bacillus shackletonii sp. nov. from volcanic soil on Candlemas Island, South Sandwich archipelago. Int J Syst Evol Microbiol 54:373–376PubMedCrossRefGoogle Scholar
  31. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP (2013) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418Google Scholar
  32. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95CrossRefGoogle Scholar
  33. Murray RGE, Doetsch RN, Robinow CF (1994) Determinative and cytological light microscopy. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 21–41Google Scholar
  34. Nguyen NL, Kim YJ, Hoang VA, Min JW, Liang ZQ, Yang DC (2013) Bacillus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 63:855–860PubMedCrossRefGoogle Scholar
  35. Priest FG, Goodfellow M, Todd C (1988) A numerical classification of the genus Bacillus. J Gen Microbiol 134:1847–1882PubMedGoogle Scholar
  36. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  37. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, NewarkGoogle Scholar
  38. Schleifer KH (1985) Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156CrossRefGoogle Scholar
  39. Seiler H, Schmidt V, Wenning M, Scherer S (2012) Bacillus kochii sp. nov., isolated from foods and a pharmaceutical manufacturing site. Int J Syst Evol Microbiol 62:1092–1097PubMedCrossRefGoogle Scholar
  40. Seiler H, Wenning M, Schmidt V, Scherer S (2013) Bacillus gottheilii sp. nov., isolated from a pharmaceutical manufacturing site. Int J Syst Evol Microbiol 63:867–872PubMedCrossRefGoogle Scholar
  41. Sheu SY, Arun AB, Jiang SR, Young CC, Chen WM (2011) Allobacillus halotolerans gen. nov., sp. nov. isolated from shrimp paste. Int J Syst Evol Microbiol 61:1023–1027PubMedCrossRefGoogle Scholar
  42. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–655Google Scholar
  43. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol l44:846–849CrossRefGoogle Scholar
  44. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCrossRefGoogle Scholar
  45. Ten LN, Baek SH, Im WT, Larina LL, Lee JS, Oh HM, Lee ST (2007) Bacillus pocheonensis sp. nov., a moderately halotolerant, aerobic bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 57:2532–2537PubMedCrossRefGoogle Scholar
  46. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefPubMedCentralGoogle Scholar
  47. Wang CY, Chang CC, Ng CC, Chen TW, Shyu YT (2008) Virgibacillus chiguensis sp. nov., a novel halophilic bacterium isolated from Chigu, a previously commercial saltern located in southern Taiwan. Int J Syst Evol Microbiol 58:341–345PubMedCrossRefGoogle Scholar
  48. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper H (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  49. Yoon JH, Kang SS, Lee KC, Kho YH, Choi SH, Kang KH, Park YH (2001) Bacillus jeotgali sp. nov., isolated from jeotgal, Korean traditional fermented seafood. Int J Syst Evol Microbiol 51:1087–1092PubMedCrossRefGoogle Scholar
  50. Zhang J, Wang JW, Fang CY, Song F, Xin YH, Qu L, Ding K (2010) Bacillus oceanisediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 60:2924–2929PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bo Liu
    • 1
  • Guo-Hong Liu
    • 1
  • Cetin Sengonca
    • 2
  • Peter Schumann
    • 3
  • Ming-Kuang Wang
    • 4
  • Jian-Yang Tang
    • 1
  • Mei-Chun Chen
    • 1
  1. 1.Agricultural Bio-resource InstituteFujian Academy of Agricultural SciencesFuzhouChina
  2. 2.Institute of Crop Sciences and Resource Conservation (INRES)University of BonnBonnGermany
  3. 3.Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweigGermany
  4. 4.Department of Agricultural ChemistryNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations