Antonie van Leeuwenhoek

, Volume 106, Issue 4, pp 593–603 | Cite as

Trichoderma songyi sp. nov., a new species associated with the pine mushroom (Tricholoma matsutake)

  • Myung Soo Park
  • Seung-Yoon Oh
  • Hae Jin Cho
  • Jonathan J. Fong
  • Woo-Jae Cheon
  • Young Woon LimEmail author
Original Paper


A new species, Trichoderma songyi, was found to be associated with the pine mushroom (Tricholoma matsutake) in Korea. This species was isolated from three different substrates: Tricholoma matsutake basidiomata, as well as roots of Pinus densiflora and soil in the fairy ring. Based on its molecular and phenotypic characteristics, we demonstrate that Trichoderma songyi is unique and distinguishable from closely related species. We performed phylogenetic analyses based on two molecular markers, the genes for both translation elongation factor 1-alpha and the second largest subunit of RNA polymerase II. Phylogenetic analyses showed that Trichoderma songyi is closely related to Trichoderma koningii aggregate and Trichoderma caerulescens. Morphologically, Trichoderma songyi can be distinguished from these closely related taxa by its growth rates, colony morphology on PDA in darkness, and coconut-like odour. Due to the economic importance of the pine mushroom, the relationship between Trichoderma songyi and Tricholoma matsutake should be studied further.


New species Pine mushroom Trichoderma koningii aggregate Translation elongation factor 1-alpha Second largest subunit of RNA polymerase II 



This work was supported by KBFOA project—the artificial propagation of Tricholoma matsutake. We also appreciate the three anonymous reviewers for their valuable comments.


  1. Bergius N, Danell E (2000) The Swedish matsutake (Tricholoma nauseosum syn. T. matsutake): distribution, abundance and ecology. Scand J For Res 15(3):318–325CrossRefGoogle Scholar
  2. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3):553–556CrossRefGoogle Scholar
  3. Chaverri P, Castlebury LA, Samuels GJ, Geiser DM (2003) Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol Phylogenet Evol 27(2):302–313PubMedCrossRefGoogle Scholar
  4. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 9(8):772CrossRefGoogle Scholar
  5. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9(10):749–759PubMedCrossRefGoogle Scholar
  6. Druzhinina IS, Komoń-Zelazowska M, Ismaiel A, Jaklitsch W, Mullaw T, Samuels GJ, Kubicek CP (2012) Molecular phylogeny and species delimitation in the section Longibrachiatum of Trichoderma. Fungal Genet Biol 49(5):358–368PubMedCentralPubMedCrossRefGoogle Scholar
  7. Gill WM, Guerin-Laguette A, Lapeyrie F, Suzuki K (2000) Matsutake–morphological evidence of ectomycorrhiza formation between Tricholoma matsutake and host roots in a pure Pinus densiflora forest stand. New Phytol 147(2):381–388CrossRefGoogle Scholar
  8. Hall IR, Yun W, Amicucci A (2003) Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol 21(10):433–438PubMedCrossRefGoogle Scholar
  9. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43–56PubMedCrossRefGoogle Scholar
  10. Jaklitsch WM (2009) European species of Hypocrea Part I. The green-spored species. Stud Mycol 63(1):1–91PubMedCentralPubMedCrossRefGoogle Scholar
  11. Jaklitsch WM (2011) European species of Hypocrea part II: species with hyaline ascospores. Fungal Divers 48(1):1–250PubMedCentralPubMedCrossRefGoogle Scholar
  12. Jaklitsch WM, Voglmayr H (2013) New combinations in Trichoderma (Hypocreaceae, Hypocreales). Mycotaxon 126(1):143–156PubMedCentralPubMedCrossRefGoogle Scholar
  13. Jaklitsch WM, Stadler M, Voglmayr H (2012) Blue pigment in Hypocrea caerulescens sp. nov. and two additional new species in sect. Trichoderma. Mycologia 104(4):925–941PubMedCentralPubMedCrossRefGoogle Scholar
  14. Jaklitsch WM, Samuels G, Ismaiel A, Voglmayr H (2013) Disentangling the Trichoderma viridescens complex. Persoonia 31(1):112–146PubMedCentralPubMedCrossRefGoogle Scholar
  15. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780PubMedCentralPubMedCrossRefGoogle Scholar
  16. Kim CS, Shirouzu T, Nakagiri A, Sotome K, Nagasawa E, Maekawa N (2012) Trichoderma mienum sp. nov., isolated from mushroom farms in Japan. Antonie Van Leeuwenhoek 102(4):629–641PubMedCrossRefGoogle Scholar
  17. Klein D, Eveleigh D (1998) Ecology of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium: basic biology, taxonomy and genetics, vol 1. CRC Press, Tokyo, pp 57–73Google Scholar
  18. Kornerup A, Wanscher JH (1963) Methuen handbook of colour. Methuen, LondonGoogle Scholar
  19. Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 16(12):1799–1808PubMedCrossRefGoogle Scholar
  20. Nirenberg H (1976) Untersuchungen uber die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft Berlin-Dahlem 169:1–117Google Scholar
  21. Ospina-Giraldo M, Royse D, Thon M, Chen X, Romaine C (1998) Phylogenetic relationships of Trichoderma harzianum causing mushroom green mold in Europe and North America to other species of Trichoderma from world-wide sources. Mycologia 90(1):76–81CrossRefGoogle Scholar
  22. Park MS, Lee KH, Yu SH (2005) Morphological and cultural characteristics of Trichoderma spp. associated with green mold of oyster mushroom in Korea. Plant Pathol J 21(3):221–228CrossRefGoogle Scholar
  23. Park MS, Bae KS, Yu SH (2006) Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology 34(3):111–113PubMedCentralPubMedCrossRefGoogle Scholar
  24. Park MS, Fong JJ, Lee H, Oh S-Y, Jung PE, Min YJ, Seok SJ, Lim YW (2013) Delimitation of russula subgenus amoenula in Korea using three molecular markers. Mycobiology 41(4):191–201PubMedCentralPubMedCrossRefGoogle Scholar
  25. Rambaut A, Drummond A (2009) Tracer v1.5. Accessed 7 Mar 2014
  26. Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2007) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7(1):89–123CrossRefGoogle Scholar
  27. Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic, Boston, pp D1: 1–8Google Scholar
  28. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542PubMedCentralPubMedCrossRefGoogle Scholar
  29. Samuels GJ (2006) Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96(2):195–206PubMedCrossRefGoogle Scholar
  30. Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94(1):146–170PubMedCrossRefGoogle Scholar
  31. Samuels GJ, Dodd SL, Lu BS, Petrini O, Schroers HJ, Druzhinina IS (2006) The Trichoderma koningii aggregate species. Stud Mycol 56:67–133PubMedCentralPubMedCrossRefGoogle Scholar
  32. Sivasithamparam K, Ghisalberti E (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium basic biology taxonomy and genetics, vol 1. Taylor and Francis Ltd., London, pp 139–191Google Scholar
  33. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690PubMedCrossRefGoogle Scholar
  34. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  35. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31(1):21–32PubMedCrossRefGoogle Scholar
  36. Vaario L-M, Fritze H, Spetz P, Heinonsalo J, Hanajík P, Pennanen T (2011) Tricholoma matsutake dominates diverse microbial communities in different forest soils. Appl Environ Microbiol 77(24):8523–8531PubMedCentralPubMedCrossRefGoogle Scholar
  37. Yamada A, Kobayashi H, Murata H, Kalmis E, Kalyoncu F, Fukuda M (2010) In vitro ectomycorrhizal specificity between the Asian red pine Pinus densiflora and Tricholoma matsutake and allied species from worldwide Pinaceae and Fagaceae forests. Mycorrhiza 20(5):333–339PubMedCrossRefGoogle Scholar
  38. Yamada A, Endo N, Murata H, Ohta A, Fukuda M (2014) Tricholoma matsutake Y1 strain associated with Pinus densiflora shows a gradient of in vitro ectomycorrhizal specificity with Pinaceae and oak hosts. Mycoscience 55(1):27–34CrossRefGoogle Scholar
  39. Yun W, Hall IR, Evans LA (1997) Ectomycorrhizal fungi with edible fruiting bodies 1. Tricholoma matsutake and related fungi. Econ Bot 51(3):311–327CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Myung Soo Park
    • 1
  • Seung-Yoon Oh
    • 1
  • Hae Jin Cho
    • 1
  • Jonathan J. Fong
    • 1
  • Woo-Jae Cheon
    • 2
  • Young Woon Lim
    • 1
    Email author
  1. 1.School of Biological SciencesSeoul National UniversitySeoulSouth Korea
  2. 2.Gyeongsanbuk-do Forest & Environment Research InstituteGyeongjuSouth Korea

Personalised recommendations