Advertisement

Antonie van Leeuwenhoek

, Volume 106, Issue 2, pp 357–363 | Cite as

Bacillus huizhouensis sp. nov., isolated from a paddy field soil

  • Jibing Li
  • Guiqin Yang
  • Min Wu
  • Yong Zhao
  • Shungui Zhou
Original Paper

Abstract

A Gram-stain positive, facultative aerobic bacterium, designated as strain GSS03T, was isolated from a paddy field soil. The cells were observed to be endospore forming, rod-shaped and motile with flagella. The organism was found to grow optimally at 35 °C at pH 7.0 and in the presence of 1 % NaCl. The strain was classified as a novel taxon within the genus Bacillus on the basis of phenotypic and phylogenetic analyses. The closest phylogenetic relatives were identified as Bacillus psychrosaccharolyticus DSM 6T (97.61 %), Bacillus muralis DSM 16288T (97.55 %), Bacillus asahii JCM 12112T (97.48 %), Bacillus simplex DSM 1321T (97.48 %) and “Bacillus frigoritolerans” DSM 8801T (97.38 %). The menaquinone was identified as MK-7, the major cellular fatty acid was identified as anteiso-C15:0 and the major cellular polar lipids as phosphatidylethanolamine, phosphatidylmonomethylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and three unknown polar lipids. The DNA G+C content was determined to be 40.2 mol%. The DNA–DNA relatedness with the closest relatives was below 48 %. Therefore, on the basis of all the results, strain GSS03T is considered to represent a novel species within the genus Bacillus, for which the name Bacillus huizhouensis sp. nov. is proposed. The type strain is GSS03T (=KCTC 33172T =CCTCC AB 2013237T).

Keywords

Bacillus huizhouensis sp. nov. Gram-staining positive Menaquinone Polar lipids 

Notes

Acknowledgments

This work was supported by the Team Project of Guangdong Natural Science Foundation (S2011030002882 and S2012030006114).

Supplementary material

10482_2014_208_MOESM1_ESM.doc (525 kb)
Supplementary material 1 (DOC 525 kb)

References

  1. Ash C, Farrow JA, Dorsch M, Stackebrandt E, Collins MD (1991) Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 41:343–346PubMedCrossRefGoogle Scholar
  2. Baker G, Smith J, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555PubMedCrossRefGoogle Scholar
  3. Caccamo D, Gugliandolo C, Stackebrandt E, Maugeri TL (2000) Bacillus vulcani sp. nov., a novel thermophilic species isolated from a shallow marine hydrothermal vent. Int J Syst Evol Microbiol 50:2009–2012PubMedCrossRefGoogle Scholar
  4. Collins M, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316PubMedCentralPubMedGoogle Scholar
  5. Collins M, Pirouz T, Goodfellow M, Minnikin D (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230PubMedCrossRefGoogle Scholar
  6. Dong X, Cai M (2001) Manual of systematic and determinative bacteriology. Science Press, Beijing, pp 166–168Google Scholar
  7. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  9. Gelsomino R, Vancanneyt M, Vandekerckhove TM, Swings J (2004) Development of a 16S rRNA primer for the detection of Brevibacterium spp. Lett Appl Microbiol 38:532–535PubMedCrossRefGoogle Scholar
  10. Ivanova EP, Vysotskii MV, Svetashev VI, Nedashkovskaya OI, Gorshkova NM, Mikhailov VV, Yumoto N, Shigeri Y, Taguchi T, Yoshikawa S (2010) Characterization of Bacillus strains of marine origin. Int Microbiol 2:267–271Google Scholar
  11. Kämpfer P (1994) Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98CrossRefGoogle Scholar
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  13. Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z, Gong Y (2009) Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol Control 49:277–285CrossRefGoogle Scholar
  14. Logan N, Lebbe L, Hoste B, Goris J, Forsyth G, Heyndrickx M, Murray B, Syme N, Wynn-Williams D, De Vos P (2000) Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int J Syst Evol Microbiol 50:1741–1753PubMedGoogle Scholar
  15. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  16. Minnikin D, Patel P, Alshamaony L, Goodfellow M (1977) Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117CrossRefGoogle Scholar
  17. Miranda CA, Martins OB, Clementino MM (2008) Species-level identification of Bacillus strains isolates from marine sediments by conventional biochemical, 16S rRNA gene sequencing and inter-tRNA gene sequence lengths analysis. Antonie Van Leeuwenhoek 93:297–304PubMedCrossRefGoogle Scholar
  18. Rijavec T, Lapanje A, Dermastia M, Rupnik M (2007) Isolation of bacterial endophytes from germinated maize kernels. Can J Microbiol 53:802–808PubMedCrossRefGoogle Scholar
  19. Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095PubMedGoogle Scholar
  20. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  21. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., NewarkGoogle Scholar
  22. Schleifer KH (1985) Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156CrossRefGoogle Scholar
  23. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K (1997) Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47:289–298PubMedCrossRefGoogle Scholar
  24. Siefert JL, Larios-Sanz M, Nakamura LK, Slepecky RA, Paul JH, Moore ER, Fox GE, Jurtshuk P Jr (2000) Phylogeny of marine Bacillus isolates from the Gulf of Mexico. Curr Microbiol 41:84–88PubMedCrossRefGoogle Scholar
  25. Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Microbiol 54:31–36Google Scholar
  26. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCentralPubMedCrossRefGoogle Scholar
  28. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  29. Zachara JM, Fredrickson JK, Li SM, Kennedy DW, Smith SC, Gassman PL (1998) Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials. Am Mineral 83:1426–1443Google Scholar
  30. Zhang L, Wang Y, Dai J, Tang Y, Yang Q, Luo X, Fang C (2009) Bacillus korlensis sp. nov., a moderately halotolerant bacterium isolated from a sand soil sample in China. Int J Syst Evol Microbiol 59:1787–1792PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jibing Li
    • 1
    • 2
  • Guiqin Yang
    • 2
  • Min Wu
    • 2
  • Yong Zhao
    • 1
  • Shungui Zhou
    • 2
  1. 1.College of Food Science and TechnologyShanghai Ocean UniversityShanghaiPeoples’s Republic of China
  2. 2.Guangdong Institute of Eco-Environmental and Soil SciencesGuangzhouPeoples’s Republic of China

Personalised recommendations