Advertisement

Antonie van Leeuwenhoek

, Volume 106, Issue 2, pp 391–398 | Cite as

Oligonucleotide primers for specific detection of actinobacterial laccases from superfamilies I and K

  • Tatiana Alves Rigamonte FernandesEmail author
  • Wendel Batista da Silveira
  • Flávia Maria Lopes Passos
  • Tiago Domingues Zucchi
Short Communication

Abstract

Although many putative laccase-like genes have been assigned to members of the phylum Actinobacteria, few of the related enzymes have been characterized so far. It is noteworthy, however, that this small number of enzymes has presented properties with industrial relevance. This observation, combined with the recognized biotechnological potential and the capability of this phylum to degrade recalcitrant soil polymers, has attracted attention for bioprospective approaches. In the present work, we have designed and tested primers that were specific for detection of sub-groups of laccase-like genes within actinomycetes, which corresponded to the superfamilies I and K from the classification presented by the laccase and multicopper oxidase engineering database. The designed primers have amplified laccase-like gene fragments from actinomycete isolates that were undetectable by primers available from the literature. Furthermore, phylogenetic alignments suggest that some of these fragments may belong to new laccases-like proteins, and thus emphasize the benefits of designing subgroup-specific primers.

Keywords

Actinomycetes Multicopper oxidase Laccase primer Lignin degradation LMCO 

Notes

Acknowledgments

The authors are grateful to FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for providing financial support (grants no. 2011/50243-1 and 2011/14333-6).

REFERENCES

  1. Alexandre G, Zhulin LB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42PubMedCrossRefGoogle Scholar
  2. Ausec L, van Elsas JD, Mandic-Mulec I (2011a) Two- and three-domain bacterial laccase-like genes are present in drained peat soils. Soil Biol Biochem 43:975–983CrossRefGoogle Scholar
  3. Ausec L, Zakrzewski M, Goesmann A, Schlüter A, Mandic-Mulec I (2011b) Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS ONE 6(10):e25724PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bugg TD, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotech 22(3):394–400PubMedCrossRefGoogle Scholar
  5. Claus H (2004) Laccases: structure, reactions, distribution. Micron 35(1–2):93–96PubMedCrossRefGoogle Scholar
  6. D’Souza TM, Boominathan K, Reddy CA (1996) Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR. Appl Environ Microb 62:3739–3744Google Scholar
  7. Da Silva LJ, Taketani RG, de Melo IS, Goodfellow M, Zucchi TD (2013) Streptomyces araujoniae sp. nov.: an actinomycete isolated from a potato tubercle. A Van Leeuw J Microb 103(6):1235–1244Google Scholar
  8. Eggert C, LaFayette PR, Temp U, Eriksson KL, Dean JFD (1998) Molecular analysis of a laccase gene from the white rot fungus Pycnoporus cinnabarinus. Appl Environ Microbiol 64(5):1766–1772PubMedCentralPubMedGoogle Scholar
  9. Fernandes TAR, Silveira WB, Passos FML, Zucchi TD (2013) Characterization of a thermotolerant laccase produced by Streptomyces sp. SB086. Ann Microbiol. doi: 10.1007/s13213-013-0781-z
  10. Fredslund J, Schauser L, Madsen LH, Sandal N, Stougaard J (2005) PriFi: using a multiple alignment of related sequences to find primers for amplification of homologs. Nucleic Acids Res 33:W516–W520PubMedCentralPubMedCrossRefGoogle Scholar
  11. Godden B, Ball AS, Helvenstein P, McCarthy AJ, Penninckx MJ (1992) Towards elucidation of the lignin degradation pathway in actinomycetes. J Gen Microbiol 138:2441–2448CrossRefGoogle Scholar
  12. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37(41):189–216PubMedCrossRefGoogle Scholar
  13. Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326PubMedCrossRefGoogle Scholar
  14. Kellner H, Luis P, Zimdars B, Kiesel B, Buscot F (2008) Diversity of bacterial laccase-like multicopper oxidase genes in forest and grassland Cambisoil soil samples. Soil Biol Biochem 40:638–648CrossRefGoogle Scholar
  15. Kumar SV, Phale PS, Durani S, Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83(4):386–394PubMedCrossRefGoogle Scholar
  16. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24PubMedCrossRefGoogle Scholar
  17. Luis P, Walther G, Kellner H, Martin F, Buscot F (2004) Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biol Biochem 36(7):1025–1036CrossRefGoogle Scholar
  18. Machczynski MC, Vijgenboom E, Samyn B, Canters GW (2004) Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Protein Sci 13:2388–2397PubMedCentralPubMedCrossRefGoogle Scholar
  19. Piscitelli A, Pezzella C, Giardina P, Faraco V, Giovanni S (2010) Heterologous laccase production and its role in industrial applications. Bioeng Bugs 1(4):252–262PubMedCentralPubMedGoogle Scholar
  20. Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thöny-Meyer L (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS ONE 8(6):e65633PubMedCentralPubMedCrossRefGoogle Scholar
  21. Schroeder M, Pöllinger-Zierler B, Aichernig N, Siegmund B, Guebitz GM (2008) Enzymatic removal of off-flavors from apple juice. J Agric Food Chem 56(7):2485–2489PubMedCrossRefGoogle Scholar
  22. Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J (2011) The laccase engineering database: a classification and analysis system for laccases and related multicopper oxidases. Database. bar006Google Scholar
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729PubMedCrossRefGoogle Scholar
  24. Taprab Y, Johjima T, Maeda Y, Moriya S, Trakulnaleamsai S, Noparatnaraporn N et al (2005) Symbiotic fungi produce laccases potentially involved in phenol degradation in fungus combs of fungus-growing termites in Thailand. Appl Environ Microbiol 71(12):7696–7704PubMedCentralPubMedCrossRefGoogle Scholar
  25. Zucchi TD, Almeida LG, Cônsoli FL (2011) Culturable bacterial diversity associated with cysts of Eurhizococcus brasiliensis (Hempel) (Hemiptera: margarodidae). World J Microbiol Biotechnol 27:791–797CrossRefGoogle Scholar
  26. Zucchi TD, Kim B-Y, Bonda ANV, Goodfellow M (2013) Actinomadura xylanilytica sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 63:576–580PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tatiana Alves Rigamonte Fernandes
    • 1
    • 2
    Email author
  • Wendel Batista da Silveira
    • 2
  • Flávia Maria Lopes Passos
    • 2
  • Tiago Domingues Zucchi
    • 1
  1. 1.Laboratório de Microbiologia AmbientalEmbrapa Meio AmbienteJaguariúnaBrazil
  2. 2.Departamento de Microbiologia, BIOAGROUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations