Antonie van Leeuwenhoek

, Volume 106, Issue 2, pp 227–233 | Cite as

Characterization of methicillin-resistant coagulase-negative staphylococci in milk from cows with mastitis in Brazil

  • Nathalia C. C. Silva
  • Felipe F. Guimarães
  • Marcela de P. Manzi
  • Elena Gómez-Sanz
  • Paula Gómez
  • Joao P. Araújo-Júnior
  • Helio Langoni
  • Vera L. M. Rall
  • Carmen Torres
Original Paper

Abstract

Staphylococci are one of the most prevalent microorganisms in bovine mastitis. Staphylococcus spp. are widespread in the environment, and can infect animals and humans as opportunistic pathogens. The objective of this study was to determine the frequency of methicillin-resistance (MR) among coagulase-negative staphylococci (CoNS) previously obtained from milk of mastitic cows in Brazil and to characterize the antimicrobial resistance phenotype/genotype and the SCCmec type of MRCoNS isolates. Identification of MRCoNS was based on both biochemical and molecular methods. Susceptibility testing for eleven antimicrobials was performed by disk-diffusion agar. Antimicrobial resistance genes and SCCmec were investigated by specific PCRs. Twenty-six MRCoNS were detected (20 % of total CoNS), obtained from 24 animals, and were identified as follows: S. epidermidis (7 isolates), S. chromogenes (7), S. warneri (6), S. hyicus (5) and S. simulans (1). All MRCoNS isolates carried mecA while the mecC gene was not detected in any CoNS. The SCCmec IVa was demonstrated in nine MRCoNS, while the remaining 17 isolates harbored non-typeable SCCmec cassettes. In addition to oxacillin and cefoxitin resistance, MRCoNS showed resistance to tetracycline (n = 7), streptomycin (n = 6), tobramycin (n = 6), and gentamicin (n = 4), and harbored the genes tet(K) (n = 7), str (n = 3), ant(4′) (n = 6) and aac(6′)-aph(2″) (n = 4), respectively. In addition, seven strains showed intermediate resistance to clindamycin and two to streptomycin, of which two harboured the lnu(B) and lsa(E) genes and two the aad(E) gene, respectively. One isolate presented intermediate erythromycin and clindamycin resistance and harbored an erm(C) gene with an uncommon 89-bp deletion rendering a premature stop codon. MRCoNS can be implicated in mastitis of cows and they constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria.

Keywords

Staphylococcus Coagulase negative mecAntimicrobial resistance Bovine mastitis 

Notes

Acknowledgments

Silva N. C. C. has a fellowship from Capes–Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Process–9877-11-8. P. Gomez has a predoctoral fellowship of the Universidad de La Rioja of Spain. Part of this work was financially supported by Project SAF2012-35474 from the Ministerio de Economía y Competitividad of Spain and Fondo Europeo de Desarrollo Regional (FEDER).

References

  1. Archer GL, Climo MW (1994) Antimicrobial susceptibility of coagulase-negative staphylococci. Antimicrob Agents Chemother 38:2231–2237PubMedCentralPubMedCrossRefGoogle Scholar
  2. Barbier F, Ruppé E, Hernandez D, Lebeaux D, Francois P, Felix B, Desprez A, Maiga A, Woerther P, Gaillard K, Jeanrot C, Wolff M, Schrenzel J, Andremont A, Ruimy R (2010) Methicillin-resistant coagulase-negative staphylococci in the community: high homology of SCCmec IVa between Staphylococcus epidermidis and major clones of methicillin-resistant Staphylococcus aureus. J Infect Dis 202:270–281PubMedCrossRefGoogle Scholar
  3. CLSI. Clinical Laboratory Standards Institute (2012) Performance standards for antimicrobial susceptibility testing, vol 19. National Committee for Clinical Laboratory Standards, Wayne M100-S19Google Scholar
  4. CRL-AR. Community Reference Laboratory for antimicrobial resistance (2009) Multiplex PCR for the detection of the mecA gene and the identification of Staphylococcus aureus National Food Insitute. Technical University of Denmark, CopenhagenGoogle Scholar
  5. Cui L, Wang Y, Li Y, He T, Schwarz S, Ding Y, Shen J, Lv Y (2013) Cfr-mediated linezolid-resistance among methicillin-resistant coagulase-negative staphylococci from infections of humans. PLoS One 8(2):e57096. doi: 10.1371/journal.pone.0057096 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Cuny C, Layer F, Strommenger B, Witte W (2011) Rare occurrence of methicillin-resistant Staphylococcus aureus CC130 with a novel mecA homologue in humans in Germany. Plos One 6(9):e24360. doi: 10.1371/journal.pone.0024360.t001 PubMedCentralPubMedCrossRefGoogle Scholar
  7. de Freitas Guimarães F, Nóbrega DB, Richini-Pereira VB, Marson PM, de Figueiredo JC, Langoni H (2013) Enterotoxin genes in coagulase-negative and coagulase-positive staphylococci isolated from bovine milk. J Dairy Sci 96:2866–2872Google Scholar
  8. DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen). Disponível em (2012) http://old.dsmz.de/microorganisms/bacterial_nomenclature_info.php?genus=Staphylococcus&show_all_details=1. Acessed 27 Mar 2012
  9. Feβler AT, Billerbeck C, Kadlec K, Schwarz S (2010) Identification and characterization of methicillin-resistant coagulase-negative staphylococci from bovine mastitis. J Antimicrob Chemother 65:1576–1582CrossRefGoogle Scholar
  10. Gómez-Sanz E, Torres C, Lozano C, Fernandez-Pérez R, Aspiroz C, Ruiz-Larrea F, Zarazaga M (2010) Detection, molecular characterization, and clonal diversity of methicillin-resistant Staphylococcus aureus CC398 and CC97 in Spanish slaughter pigs of different age groups. Food Path Dis 7:1269–1277CrossRefGoogle Scholar
  11. IWG-SCC (2009) International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother 53:4961–4967Google Scholar
  12. Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN, Etienne J (2007) Combination of multiplex PCRs for Staphylococcal Cassette Chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 51:264–274PubMedCentralPubMedCrossRefGoogle Scholar
  13. Lina G, Quaglia A, Reverdy ME, Leclercq R, Vandenesch F, Etienne J (1999) Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob Agents Chemother 43:1062–1066PubMedCentralPubMedGoogle Scholar
  14. Lozano C, Aspiroz C, Sáenz Y, Ruiz-García M, Royo-García G, Gómez-Sanz E, Ruiz-Larrea F, Zarazaga M, Torres C (2012) Genetic environment and location of the lnu(A) and lnu(B) genes in methicillin-resistant Staphylococcus aureus and other staphylococci of animal and human origin. J Antimicrob Chemother 67:2804–2808PubMedCrossRefGoogle Scholar
  15. Nam HM, Lim SK, Kim JM, Kang HM, Moon JS, Jang GC, Kim JM, Wee SH, Joo YS, Jung SC (2010) Antimicrobial susceptibility of coagulase-negative Staphylococci isolated from bovine mastitis between 2003 and 2008 in Korea. J Microbiol Biotechnol 20:1446–1449PubMedCrossRefGoogle Scholar
  16. Poyart C, Quesne G, Boumaila C, Trieu-Cuot P (2001) Rapid and accurate species-level identification of coagulase-negative staphylococci by using the sodA gene as a target. J Clin Microbiol 39:4296–4301PubMedCentralPubMedCrossRefGoogle Scholar
  17. Sampimon OC, Lam TJ, Mevius DJ, Schukken YH, Zadoks RN (2011) Antimicrobial susceptibility of coagulase-negative staphylococci isolated from bovine milk samples. Vet Microbiol 150:173–179PubMedCrossRefGoogle Scholar
  18. Santos LL, Fogaça TF, Pedroso E (2010) Perfil etiológico da mastite bovina na bacia leiteira de Santa Izabel do oeste, Paraná. Ci Anim Bras 11:860–866Google Scholar
  19. Sawant AA, Gillespie BE, Oliver SP (2009) Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Vet Microbiol 134(1–2):73–81PubMedCrossRefGoogle Scholar
  20. Silva NCC, Guimarães FF, Manzi MP, Budri PE, Gómez-Sanz E, Benito D, Langoni H, Rall VLM, Torres C (2013) Detection, molecular characterization, and clonal diversity of methicillin- susceptible Staphylococcus aureus in milk of cows with mastitis in Brazil. J Dairy Sci 96:6856–6862PubMedCrossRefGoogle Scholar
  21. Spizek J, Rezanka T (2004) Lincomycin, clindamycin and their applications. Appl Microbiol Biotechnol 64:455–464PubMedCrossRefGoogle Scholar
  22. Taponen S, Pyörälä S (2009) Coagulase-negative staphylococci as cause of bovine mastitis—not so different from Staphylococcus aureus? Vet Microbiol 134:29–36PubMedCrossRefGoogle Scholar
  23. Taponen S, Björkroth J, Pyörälä S (2008) Coagulase-negative staphylococci isolated from bovine extramammary sites and intramammary infections in a single dairy herd. J Dairy Res 75:422–429PubMedCrossRefGoogle Scholar
  24. Virdis S, Scarano C, Cossu F, Spanu V, Spanu C, De Santis EPL (2010) Antibiotic resistance in Staphylococcus aureus and coagulase negative staphylococci isolated from goats with subclinical mastitis. Vet Med Internat 2010:6. doi: 10.4061/2010/517060. ID 517060CrossRefGoogle Scholar
  25. Weisblum B (1995) Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 39:577–585PubMedCentralPubMedCrossRefGoogle Scholar
  26. Wendlandt S, Lozano C, Kadlec K, Gómez-Sanz E, Zarazaga M, Torres C, Schwarz S (2013) The enterococcal ABC transporter gene lsa(E) confers combined resistance to lincosamides, pleuromutilins and streptogramin A antibiotics in methicillin-susceptible and methicillin resistant Staphylococcus aureus. J Antimicrob Chemother 268:473–475CrossRefGoogle Scholar
  27. Zhang K, McClure JA, Elsayed S, Louie T, Conly JM (2005) Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clinical Microbiol 43:5026–5033CrossRefGoogle Scholar
  28. Ziebuhr W, Krimmer V, Rachid S, Loßner I, Gotz F, Hacker J (1999) A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol 32:345–356PubMedCrossRefGoogle Scholar
  29. Zong Z, Peng C, Lu X (2011) Diversity of SCCmec elements in methicillin-resistant coagulase-negative Staphylococci clinical isolates. Plos One 6(5):e20191. doi: 10.1371/journal.pone.0020191 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nathalia C. C. Silva
    • 1
    • 2
  • Felipe F. Guimarães
    • 3
  • Marcela de P. Manzi
    • 3
  • Elena Gómez-Sanz
    • 4
    • 5
  • Paula Gómez
    • 4
  • Joao P. Araújo-Júnior
    • 1
  • Helio Langoni
    • 3
  • Vera L. M. Rall
    • 1
  • Carmen Torres
    • 4
  1. 1.Department of Microbiology and ImmunologyUNESPBotucatuBrazil
  2. 2.Department of Agri-food IndustryFood and Nutrition–LAN USPPiracicabaBrazil
  3. 3.Department of Hygiene Veterinary and Public HealthUNESPBotucatuBrazil
  4. 4.Department of Food and AgricultureUniversidad de La RiojaLogroñoSpain
  5. 5.Environmental Genomics and Systems Biology Research GroupInstitute of Natural Resource Sciences Zurich University of Applied Sciences (ZHAW)WädenswilSwitzerland

Personalised recommendations