Advertisement

Antonie van Leeuwenhoek

, Volume 105, Issue 6, pp 1049–1072 | Cite as

A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex)

  • Mobolaji Adeolu
  • Radhey S. Gupta
Original Paper

Abstract

The genus Borrelia contains two groups of organisms: the causative agents of Lyme disease and their relatives and the causative agents of relapsing fever and their relatives. These two groups are morphologically indistinguishable and are difficult to distinguish biochemically. In this work, we have carried out detailed comparative genomic analyses on protein sequences from 38 Borrelia genomes to identify molecular markers in the forms of conserved signature inserts/deletions (CSIs) that are specifically found in the Borrelia homologues, and conserved signature proteins (CSPs) which are uniquely present in Borrelia species. Our analyses have identified 31 CSIs and 82 CSPs that are uniquely shared by all sequenced Borrelia species, providing molecular markers for this group of organisms. In addition, our work has identified 7 CSIs and 21 CSPs which are uniquely found in the Lyme disease Borrelia species and eight CSIs and four CSPs that are specific for members of the relapsing fever Borrelia group. Additionally, 38 other CSIs, in proteins which are uniquely found in Borrelia species, also distinguish these two groups of Borrelia. The identified CSIs and CSPs provide novel and highly specific molecular markers for identification and distinguishing between the Lyme disease Borrelia and the relapsing fever Borrelia species. We also report the results of average nucleotide identity (ANI) analysis on Borrelia genomes and phylogenetic analysis for these species based upon 16S rRNA sequences and concatenated sequences for 25 conserved proteins. These analyses also support the distinctness of the two Borrelia clades. On the basis of the identified molecular markers, the results from ANI and phylogenetic studies, and the distinct pathogenicity profiles and arthropod vectors used by different Borrelia spp. for their transmission, we are proposing a division of the genus Borrelia into two separate genera: an emended genus Borrelia, containing the causative agents of relapsing fever and a novel genus, Borreliella gen. nov., containing the causative agents of Lyme disease.

Keywords

Borrelia Borreliella Borrelia taxonomy Lyme disease Phylogenetic trees Average nucleotide identity Conserved signature indels Conserved signature proteins 

Supplementary material

10482_2014_164_MOESM1_ESM.pdf (885 kb)
Supplementary material 1 (PDF 885 kb)

References

  1. Adams DA, Gallagher KM, Jajosky RA, Kriseman J, Sharp P, Anderson WJ, Aranas AE, Mayes M, Wodajo MS, Onweh DH et al (2013) Summary of notifiable diseases—United States, 2011. MMWR Morb Mortal Wkly Rep 60(53):1–117PubMedGoogle Scholar
  2. Adeolu M, Gupta RS (2013) Phylogenomics and molecular signatures for the order Neisseriales: proposal for division of the order Neisseriales into the emended family Neisseriaceae and Chromobacteriaceae fam nov. Antonie Van Leeuwenhoek Int J G 104(1):1–24CrossRefGoogle Scholar
  3. Ahmod NZ, Gupta RS, Shah HN (2011) Identification of a Bacillus anthracis specific indel in the yeaC gene and development of a rapid pyrosequencing assay for distinguishing B. anthracis from the B. cereus group. J Microbiol Methods 87(3):278–285PubMedCrossRefGoogle Scholar
  4. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  5. Baranton G, Postic D, Saint Girons I, Boerlin P, Piffaretti J-C, Assous M, Grimont PAD (1992) Delineation of Borrelia burgdorferi Sensu Stricto, Borrelia garinii sp. nov., and Group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol 42(3):378–383PubMedCrossRefGoogle Scholar
  6. Barbour AG (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57(4):521PubMedCentralPubMedGoogle Scholar
  7. Barbour AG (2005) Relapsing fever. In: Goodman JL, Dennis DT, Sonenshine DE (eds) Tick-borne diseases of humans. ASM Press, Washington, pp 268–291CrossRefGoogle Scholar
  8. Barbour AG, Miller SC (2014) Genome sequence of Borrelia parkeri, an agent of enzootic relapsing fever in Western North America. Genome Announc 2(1):e00018Google Scholar
  9. Bergey DH (1925) Bergey’s manual of determinative bacteriology, 2nd edn. The Williams and Wilkins Co, BaltimoreGoogle Scholar
  10. Bhandari V, Gupta RS (2012) Molecular signatures for the phylum Synergistetes and some of its subclades. Antonie Van Leeuwenhoek 102(4):517–540PubMedCrossRefGoogle Scholar
  11. Bhandari V, Gupta RS (2014) Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. Antonie Van Leeuwenhoek 105(1):143–168PubMedCrossRefGoogle Scholar
  12. Bhandari V, Ahmod NZ, Shah HN, Gupta RS (2013) Molecular signatures for Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus. Int J Syst Evol Microbiol 63:2712–2726PubMedCrossRefGoogle Scholar
  13. Brenner EV, Kurilshikov AM, Stronin OV, Fomenko NV (2012) Whole-genome sequencing of Borrelia garinii BgVir, isolated from Taiga ticks (Ixodes persulcatus). J Bacteriol 194(20):5713PubMedCentralPubMedCrossRefGoogle Scholar
  14. Canica MM, Du Merle L, Mazie JC, Baranton G, Postic D (1994) Borrelia afzelii sp. nov. Validation of the publication of new names and new combinations previously effectively published outside the IJSB, list no 48. Int J Syst Bacteriol 44:182–183CrossRefGoogle Scholar
  15. Casjens SR, Fraser-Liggett CM, Mongodin EF, Qiu WG, Dunn JJ, Luft BJ, Schutzer SE (2011a) Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate. J Bacteriol 193(6):1489–1490PubMedCentralPubMedCrossRefGoogle Scholar
  16. Casjens SR, Mongodin EF, Qiu WG, Dunn JJ, Luft BJ, Fraser-Liggett CM, Schutzer SE (2011b) Whole-genome sequences of two Borrelia afzelii and two Borrelia garinii Lyme disease agent isolates. J Bacteriol 193(24):6995–6996PubMedCentralPubMedCrossRefGoogle Scholar
  17. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552PubMedCrossRefGoogle Scholar
  18. Chaconas G (2005) Hairpin telomeres and genome plasticity in Borrelia: all mixed up in the end. Mol Microbiol 58(3):625–635PubMedCrossRefGoogle Scholar
  19. Chaconas G, Kobryn K (2010) Structure, function, and evolution of linear replicons in Borrelia. Annu Rev Microbiol 64:185–202PubMedCrossRefGoogle Scholar
  20. Charlebois RL, Doolittle WF (2004) Computing prokaryotic gene ubiquity: rescuing the core from extinction. Genome Res 14(12):2469–2477PubMedCentralPubMedCrossRefGoogle Scholar
  21. Ciccarelli FD, Doerks T, Von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311(5765):1283–1287PubMedCrossRefGoogle Scholar
  22. Cutler SJ (2010) Relapsing fever: a forgotten disease revealed. J Appl Microbiol 108(4):1115–1122PubMedCrossRefGoogle Scholar
  23. Dai Q, Restrepo BI, Porcella SF, Raffel SJ, Schwan TG, Barbour AG (2006) Antigenic variation by Borrelia hermsii occurs through recombination between extragenic repetitive elements on linear plasmids. Mol Microbiol 60(6):1329–1343PubMedCrossRefGoogle Scholar
  24. Dunaj J, Moniuszko A, Zajkowska J, Pancewicz S (2013) The role of PCR in diagnostics of Lyme borreliosis. Przegl Epidemiol 67(1): 35–39, 119–123Google Scholar
  25. Elbir H, Gimenez G, Robert C, Bergström S, Cutler S, Raoult D, Drancourt M (2012) Complete genome sequence of Borrelia crocidurae. J Bacteriol 194(14):3723–3724PubMedCentralPubMedCrossRefGoogle Scholar
  26. Elbir H, Larsson P, Normark J, Upreti M, Korenberg E, Larsson C, Bergstrom S (2014a) Genome sequence of the Asiatic species Borrelia persica. Genome Announc 2(1):e01127Google Scholar
  27. Elbir H, Larsson P, Upreti M, Normark J, Bergstrom S (2014b) Genome sequence of the relapsing fever borreliosis species Borrelia hispanica. Genome Announc 2(1):e01171Google Scholar
  28. Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK et al (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390(6660):580–586PubMedCrossRefGoogle Scholar
  29. Fukunaga M, Okada K, Nakao M, Konishi T, Sato Y (1996) Phylogenetic analysis of Borrelia species based on flagellin gene sequences and its application for molecular typing of Lyme disease borreliae. Int J Syst Bacteriol 46(4):898–905PubMedCrossRefGoogle Scholar
  30. Fukunaga M, Hamase A, Okada K, Nakao M (1997a) Borrelia tanukii sp. nov. Validation of the publication of new names and new combinations previously effectively published outside the IJSB, list no 63. Int J Syst Bacteriol 47:1274CrossRefGoogle Scholar
  31. Fukunaga M, Hamase A, Okada K, Nakao M (1997b) Borrelia turdi sp. nov. Validation of the publication of new names and new combinations previously effectively published outside the IJSB, list no 63. Int J Syst Bacteriol 47:1274CrossRefGoogle Scholar
  32. Gao B, Gupta R (2007) Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis. BMC Genom 8(1):86CrossRefGoogle Scholar
  33. Gao B, Gupta RS (2012a) Microbial systematics in the post-genomics era. Antonie Van Leeuwenhoek 101(1):45–54PubMedCrossRefGoogle Scholar
  34. Gao B, Gupta RS (2012b) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76(1):66–112PubMedCentralPubMedCrossRefGoogle Scholar
  35. Glöckner G, Lehmann R, Romualdi A, Pradella S, Schulte-Spechtel U, Schilhabel M, Wilske B, Sühnel J, Platzer M (2004) Comparative analysis of the Borrelia garinii genome. Nucleic Acids Res 32(20):6038–6046PubMedCentralPubMedCrossRefGoogle Scholar
  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57(1):81–91PubMedCrossRefGoogle Scholar
  37. Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62(4):1435PubMedCentralPubMedGoogle Scholar
  38. Gupta RS (2010) Applications of conserved indels for understanding microbial phylogeny. In: Oren A, Papke RT (eds) Molecular phylogeny of microorganisms. Caister Academic Press, Norfolk, pp 135–150Google Scholar
  39. Gupta RS, Griffiths E (2006) Chlamydiae-specific proteins and indels: novel tools for studies. Trends Microbiol 14(12):527–535PubMedCrossRefGoogle Scholar
  40. Gupta RS, Lali R (2013) Molecular signatures for the phylum Aquificae and its different clades: proposal for division of the phylum Aquificae into the emended order Aquificales, containing the families Aquificaceae and Hydrogenothermaceae, and a new order Desulfurobacteriales ord. nov., containing the family Desulfurobacteriaceae. Antonie Van Leeuwenhoek 104(3):349–368PubMedCrossRefGoogle Scholar
  41. Gupta RS, Chander P, George S (2013a) Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexia class. nov. [corrected] into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. nov. Antonie Van Leeuwenhoek 103(1):99–119PubMedCrossRefGoogle Scholar
  42. Gupta RS, Mahmood S, Adeolu M (2013b) A phylogenomic and molecular signature based approach for characterization of the phylum Spirochaetes and its major clades: proposal for a taxonomic revision of the phylum. Front Microbiol 4:217PubMedCentralPubMedGoogle Scholar
  43. Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13(3):407–412PubMedCentralPubMedCrossRefGoogle Scholar
  44. Hue F, Ghalyanchi Langeroudi A, Barbour AG (2013) Chromosome sequence of Borrelia miyamotoi, an uncultivable tick-borne agent of human infection. Genome Announc 1(5):e00713Google Scholar
  45. Ibba M, Bono JL, Rosa PA, Soll D (1997) Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proc Natl Acad Sci USA 94(26):14383–14388PubMedCentralPubMedCrossRefGoogle Scholar
  46. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23(10):403PubMedCrossRefGoogle Scholar
  47. Jiang B, Yao H, Tong Y, Yang X, Huang Y, Jiang J, Cao W (2012a) Genome sequence of Borrelia garinii strain NMJW1, isolated from China. J Bacteriol 194(23):6660–6661PubMedCentralPubMedCrossRefGoogle Scholar
  48. Jiang BG, Zheng YC, Tong YG, Jia N, Huo QB, Fan H, Ni XB, Ma L, Yang XF, Jiang JF et al (2012b) Genome sequence of Borrelia afzelii Strain HLJ01, isolated from a patient in China. J Bacteriol 194(24):7014–7015PubMedCentralPubMedCrossRefGoogle Scholar
  49. Johnson RC, Schmid GP, Hyde FW, Steigerwalt AG, Brenner DJ (1984) Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. Int J Syst Bacteriol 34(4):496–497CrossRefGoogle Scholar
  50. Kawabata H, Masuzawa T, Yanagihara Y (1994) Borrelia japonica sp. nov. Validation of the publication of new names and new combinations previously effectively published outside the IJSB, list no 50. Int J Syst Bacteriol 44:595CrossRefGoogle Scholar
  51. Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark WA (1992) International code of nomenclature of bacteria: bacteriological code, 1990 revision. ASM Press International Union of Microbiological Societies, WashingtonGoogle Scholar
  52. Le Fleche A, Postic D, Girardet K, Peter O, Baranton G (1997) Characterization of Borrelia lusitaniae sp. nov. by 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol 47(4):921–925PubMedCrossRefGoogle Scholar
  53. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25(7):1307–1320PubMedCrossRefGoogle Scholar
  54. Lescot M, Audic S, Robert C, Nguyen TT, Blanc G, Cutler SJ, Wincker P, Couloux A, Claverie JM, Raoult D (2008) The genome of Borrelia recurrentis, the agent of deadly louse-borne relapsing fever, is a degraded subset of tick-borne Borrelia duttonii. PLoS Genet 4(9):e1000185PubMedCentralPubMedCrossRefGoogle Scholar
  55. Lindgren E, Jaenson TG (2006) Lyme borreliosis in Europe: influences of climate and climate change, epidemiology, ecology and adaptation measures. WHO Regional Office for Europe, CopenhagenGoogle Scholar
  56. Ljostad U, Mygland A (2013) Chronic Lyme; diagnostic and therapeutic challenges. Acta Neurol Scand 127 Suppl(196):38–47Google Scholar
  57. Margos G, Vollmer SA, Cornet M, Garnier M, Fingerle V, Wilske B, Bormane A, Vitorino L, Collares-Pereira M, Drancourt M et al (2009) A new Borrelia species defined by multilocus sequence analysis of housekeeping genes. Appl Environ Microbiol 75(16):5410–5416PubMedCentralPubMedCrossRefGoogle Scholar
  58. Margos G, Vollmer SA, Ogden NH, Fish D (2011) Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol 11(7):1545–1563PubMedCentralPubMedCrossRefGoogle Scholar
  59. Margos G, Piesman J, Lane RS, Ogden NH, Sing A, Straubinger RK, Fingerle V (2013a). Borrelia kurtenbachii sp. nov.: a widely distributed member of the Borrelia burgdorferi sensu lato species complex in North America. Int J Syst Evol Microbiol 64(Pt 1):128–30. doi: 10.1099/ijs.0.054593-0 Google Scholar
  60. Margos G, Wilske B, Sing A, Hizo-Teufel C, Cao WC, Chu C, Scholz H, Straubinger RK, Fingerle V (2013b) Borrelia bavariensis sp. nov. is widely distributed in Europe and Asia. Int J Syst Evol Microbiol 63(Pt 11):4284–4288PubMedCrossRefGoogle Scholar
  61. Masuzawa T, Takada N, Kudeken M, Fukui T, Yano Y, Ishiguro F, Kawamura Y, Imai Y, Ezaki T (2001) Borrelia sinica sp. nov., a lyme disease-related Borrelia species isolated in China. Int J Syst Evol Microbiol 51(Pt 5):1817–1824PubMedCrossRefGoogle Scholar
  62. Naushad HS, Lee B, Gupta RS (2014) Conserved signature indels and signature proteins as novel tools for understanding microbial phylogeny and systematics: identification of molecular signatures that are specific for the phytopathogenic genera Dickeya, Pectobacterium and Brenneria. Int J Syst Evol Microbiol 64(2):366–383PubMedCrossRefGoogle Scholar
  63. NCBI (2014) NCBI genome database. http://www.ncbi.nlm.nih.gov/genome/
  64. Parte AC (2014) LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42(D1):D613–D616Google Scholar
  65. Paster BJ (2011) Phylum XV. Spirochaetes Garrity and Holt 2001. In Brenner DJ, Krieg NR, Garrity GM, Staley JT (eds) Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol 3. Springer, New York, pp 471–471 (reprinted from: not in File)Google Scholar
  66. Postic D, Edlinger C, Richaud C, Grimont F, Dufresne Y, Perolat P, Baranton G, Grimont PAD (1990) Two genomic species in Borrelia burgdorferi. Res Microbiol 141(4):465–475PubMedCrossRefGoogle Scholar
  67. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596PubMedCentralPubMedCrossRefGoogle Scholar
  68. Ras NM, Lascola B, Postic D, Cutler SJ, Rodhain F, Baranton G, Raoult D (1996) Phylogenesis of relapsing fever Borrelia spp. Int J Syst Bacteriol 46(4):859–865PubMedCrossRefGoogle Scholar
  69. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106(45):19126–19131PubMedCentralPubMedCrossRefGoogle Scholar
  70. Richter D, Postic D, Sertour N, Livey I, Matuschka FR, Baranton G (2006) Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmanii sp. nov. Int J Syst Evol Microbiol 56(Pt 4):873–881PubMedCrossRefGoogle Scholar
  71. Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15(11):454–459PubMedCrossRefGoogle Scholar
  72. Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425(6960):798–804PubMedCrossRefGoogle Scholar
  73. Rosselló-Mora R (2006) DNA–DNA reassociation methods applied to microbial taxonomy and their critical evaluation. In: Stackebrandt E (ed) Molecular identification, systematics, and population structure of prokaryotes. Springer, Berlin, pp 23–50Google Scholar
  74. Rudenko N, Golovchenko M, Lin T, Gao L, Grubhoffer L, Oliver JH Jr (2010) Borrelia americana sp. nov. List of new names and new combinations previously effectively, but not validly, published, list no 135. Int J Syst Evol Microbiol 60:1985–1986CrossRefGoogle Scholar
  75. Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH Jr (2011) Borrelia carolinensis sp. nov., a novel species of the Borrelia burgdorferi sensu lato complex isolated from rodents and a tick from the south-eastern USA. Int J Syst Evol Microbiol 61(Pt 2):381–383PubMedCentralPubMedCrossRefGoogle Scholar
  76. Schutzer SE, Fraser-Liggett CM, Casjens SR, Qiu WG, Dunn JJ, Mongodin EF, Luft BJ (2011) Whole-genome sequences of thirteen isolates of Borrelia burgdorferi. J Bacteriol 193(4):1018–1020PubMedCentralPubMedCrossRefGoogle Scholar
  77. Schutzer SE, Fraser-Liggett CM, Qiu WG, Kraiczy P, Mongodin EF, Dunn JJ, Luft BJ, Casjens SR (2012) Whole-genome sequences of Borrelia bissettii, Borrelia valaisiana, and Borrelia spielmanii. J Bacteriol 194(2):545–546PubMedCentralPubMedCrossRefGoogle Scholar
  78. Segata N, Bornigen D, Morgan XC, Huttenhower C (2013) PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 4:2304PubMedCentralPubMedCrossRefGoogle Scholar
  79. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30(1):225–420CrossRefGoogle Scholar
  80. Swellengrebel NH (1907) Sur la cytologie comparée des spirochètes et des spirilles. Ann Inst Pasteur (Paris) 21:562–586Google Scholar
  81. Takano A, Goka K, Une Y, Shimada Y, Fujita H, Shiino T, Watabane H, Kawabata H (2010) Isolation and characterization of a novel Borrelia group of tick-borne borreliae from imported reptiles and their associated ticks. Environ Microbiol 12(1):134–146PubMedCrossRefGoogle Scholar
  82. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729PubMedCrossRefGoogle Scholar
  83. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In Miura RM (ed) Lectures on mathematics in the life sciences, 17th edn. American Mathematical Society, Providence, pp 57–86 (reprinted from: not in file)Google Scholar
  84. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL (2013) Microbial genomic taxonomy. BMC Genom 14(1):913CrossRefGoogle Scholar
  85. Valsangiacomo C, Balmelli T, Piffaretti JC (1997) A phylogenetic analysis of Borrelia burgdorferi sensu lato based on sequence information from the hbb gene, coding for a histone-like protein. Int J Syst Bacteriol 47(1):1–10PubMedCrossRefGoogle Scholar
  86. Vinuesa P (2010) Multilocus sequence analysis and bacterial species phylogeny estimation. In: Oren A, Papke RT (eds) Molecular phylogeny of microorganisms. Caister Academic Press, Norfolk, pp 41–64Google Scholar
  87. Wang G, Schwartz I (2011) Genus II. Borrelia Swellengrebel 1907, 582AL. In: Brenner DJ, Krieg NR, Garrity GM, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 484–498Google Scholar
  88. Wang G, van Dam AP, Le Fleche A, Postic D, Peter O, Baranton G, de Boer R, Spanjaard L, Dankert J (1997) Genetic and phenotypic analysis of Borrelia valaisiana sp. nov. (Borrelia genomic groups VS116 and M19). Int J Syst Bacteriol 47(4):926–932PubMedCrossRefGoogle Scholar
  89. Wang G, van Dam AP, Schwartz I, Dankert J (1999) Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin Microbiol Rev 12(4):633–653PubMedCentralPubMedGoogle Scholar
  90. Wright WF, Riedel DJ, Talwani R, Gilliam BL (2012) Diagnosis and management of Lyme disease. Am Fam Physician 85(11):1086–1093PubMedGoogle Scholar
  91. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ (2009) A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 462(7276):1056–1060PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations