Advertisement

Antonie van Leeuwenhoek

, Volume 106, Issue 1, pp 57–65 | Cite as

Time to revisit polyphasic taxonomy

  • Peter Vandamme
  • Charlotte Peeters
Invited Review Antonie van Leeuwenhoek 80th Anniversary Issue

Abstract

Although the International Code of Nomenclature of Bacteria does not specify a working strategy, editors and reviewers of taxonomic journals commonly request a polyphasic taxonomic approach that includes phenotypic, genotypic and chemotaxonomic information for the description of novel bacterial species. Whole genome sequences provide an insight into the genetic nature of microbial species, yield new and superior tools for delineating bacterial species and for studying their phylogeny, and provide a window on an organism’s metabolic potential. These new insights and tools are gradually introduced in the polyphasic taxonomic practice. The genus Burkholderia, a controversial group of bacteria with both benign and devastating characteristics, is used as an example to show that the modern practice of polyphasic taxonomy is counterproductive in light of the tremendous number of bacterial species that awaits formal description and naming. Bacterial taxonomists must urgently reconsider how to describe and name novel bacteria in the genomic era, and should consider using a full genome sequence and a minimal description of phenotypic characteristics as a basic, sufficient, cost-effective and appropriate biological identity card for a species description.

Keywords

Bacterial taxonomy Polyphasic taxonomy Species description Whole genome sequence Burkholderia Genomics 

Notes

Acknowledgments

We thank Iain Sutcliffe, Editor-in-Chief of Antonie van Leeuwenhoek, for his kind invitation to contribute to this festive issue of the journal and for giving us the opportunity to express some of our concerns. C. P. is indebted to the Special Research Council of Ghent University. The Burkholderia cepacia complex National Reference Center is supported by the Belgian Ministry of Social Affairs through a fund within the Health Insurance System.

References

  1. Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440. doi: 10.1038/Nrmicro1872 PubMedGoogle Scholar
  2. Amaral GRS, Dias GM, Wellington-Oguri M, Chimetto L, Campeão ME, Thompson FL, Thompson CC (2014) Genotype to phenotype: identification of diagnostic vibrio phenotypes using whole genome sequences. Int J Syst Evol Microbiol 64:357–365. doi: 10.1099/ijs.0.057927-0 PubMedCrossRefGoogle Scholar
  3. Angus A, Agapakis CM, Fong S, Yerrapragada S, Estrada-de Los Santos P, Yang P, Song N, Kano S, Caballero-Mellado J, de Faria SM, Dakora FD, Weinstock G, Hirsch AM (2014) Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis. PLoS ONE. doi: 10.1371/journal.pone.0083779 Google Scholar
  4. Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729. doi: 10.1046/j.1462-2920.2003.00471.x PubMedCrossRefGoogle Scholar
  5. Coenye T, Laevens S, Willems A, Ohlen M, Hannant W, Govan JRW, Gillis M, Falsen E, Vandamme P (2001) Burkholderia fungorum sp. nov., and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int J Syst Evol Microbiol 51:1099–1107PubMedCrossRefGoogle Scholar
  6. Coenye T, Goris J, Spilker T, Lipuma JJ, Vandamme P (2002) Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov. J Clin Microbiol 40:2062–2069. doi: 10.1128/JCM.40.6.2062 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Colwell RR (1970) Polyphasic taxonomy of the genus vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104:410–433PubMedCentralPubMedGoogle Scholar
  8. Compant S, Nowak J, Coenye T, Clément C, Ait Barka E, Clement C, Barka EA (2008) Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 32:607–626. doi: 10.1111/j.1574-6976.2008.00113.x PubMedCrossRefGoogle Scholar
  9. Deloger M, El Karoui M, Petit MA (2009) A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. J Bacteriol 191:91–99. doi: 10.1128/Jb.01202-08 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Deris ZZ, Van Rostenberghe H, Habsah H, Noraida R, Tan GC, Chan YY, Rosliza AR, Ravichandran M (2010) First isolation of Burkholderia tropica from a neonatal patient successfully treated with imipenem. Int J Infect Dis 14:e73–e74. doi: 10.1016/j.ijid.2009.03.005 PubMedCrossRefGoogle Scholar
  11. Desai AP, Stanley T, Atuan M, McKey J, Lipuma JJ, Rogers B, Jerris R (2012) Use of matrix assisted laser desorption ionisation-time of flight mass spectrometry in a paediatric clinical laboratory for identification of bacteria commonly isolated from cystic fibrosis patients. J Clin Pathol 65:835–838. doi: 10.1136/jclinpath-2012-200772 PubMedCrossRefGoogle Scholar
  12. Estrada-de Los Santos P, Vinuesa P, Martínez-Aguilar L, Hirsch AM, Caballero-Mellado J (2013) Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr Microbiol 67:51–60. doi: 10.1007/s00284-013-0330-9 PubMedCrossRefGoogle Scholar
  13. Gerrits G, Klaassen C, Coenye T, Vandamme P, Meis JF (2005) Burkholderia fungorum septicemia. Emerg Infect Dis 11:1115–1117PubMedCentralPubMedCrossRefGoogle Scholar
  14. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739. doi: 10.1038/Nrmicro1236 PubMedCrossRefGoogle Scholar
  15. Gevers D, Dawyndt P, Vandamme P, Willems A, Vancanneyt M, Swings J, De Vos P (2006) Stepping stones towards a new prokaryotic taxonomy. Philos Trans R Soc B-Biological Sci 361:1911–1916. doi: 10.1098/Rstb.2006.1915 CrossRefGoogle Scholar
  16. Goris J, De Vos P, Caballero-Mellado J, Park J, Falsen E, Quensen JF, Tiedje JM, Vandamme P (2004) Classification of the biphenyl and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov. Int J Syst Evol Microbiol 54:1677–1681. doi: 10.1099/ijs.0.63101-0 PubMedCrossRefGoogle Scholar
  17. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. doi: 10.1099/ijs.0.64483-0 PubMedCrossRefGoogle Scholar
  18. Gyaneshwar P, Hirsch AM, Moulin L, Chen W-M, Elliott GN, Bontemps C, Estrada-de Los Santos P, Gross E, Dos Reis FB, Sprent JI, Young JPW, James EK (2011) Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol plantmicrobe Interact MPMI 24:1276–1288. doi: 10.1094/MPMI-06-11-0172 CrossRefGoogle Scholar
  19. Hibbett DS, Taylor JW (2013) Fungal systematics: is a new age of enlightenment at hand? Nat Rev Microbiol 11:129–133. doi: 10.1038/nrmicro2963 PubMedCrossRefGoogle Scholar
  20. Jolley KA, Maiden MC (2010) BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11:595. doi: 10.1186/1471-2105-11-595 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102:2567–2572. doi: 10.1073/pnas.0409727102 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Lemaire B, Robbrecht E, Wyk B, Oevelen S, Verstraete B, Prinsen E, Smets E, Dessein S (2011) Identification, origin, and evolution of leaf nodulating symbionts of Sericanthe (Rubiaceae). J Microbiol 6:935–941. doi: 10.1007/s12275-011-1163-5 CrossRefGoogle Scholar
  23. Lemaire B, Van Oevelen S, De Block P, Verstraete B, Smets E, Prinsen E, Dessein S (2012) Identification of the bacterial endosymbionts in leaf nodules of Pavetta (Rubiaceae). Int J Syst Evol Microbiol 62:202–209. doi: 10.1099/ijs.0.028019-0 PubMedCrossRefGoogle Scholar
  24. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou JJ, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145. doi: 10.1073/pnas.95.6.3140 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Oren A, Garrity GM (2014) Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie Van Leeuwenhoek. doi: 10.1007/s10482-013-0084-1 Google Scholar
  26. Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258. doi: 10.1146/annurev.phyto.39.1.225 PubMedCrossRefGoogle Scholar
  27. Peeters C, Zlosnik JEA, Spilker T, Hird TJ, Lipuma JJ, Vandamme P (2013) Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst Appl Microbiol 36:483–489. doi: 10.1016/j.syapm.2013.06.003 PubMedCrossRefGoogle Scholar
  28. Ramasamy D, Mishra AK, Lagier J-C, Padhmanabhan R, Rossi M, Sentausa E, Raoult D, Fournier P-E (2014) A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 64:384–391. doi: 10.1099/ijs.0.057091-0 PubMedCrossRefGoogle Scholar
  29. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. doi: 10.1073/pnas.0906412106 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  31. Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266. doi: 10.1007/s00248-011-9929-1 PubMedCrossRefGoogle Scholar
  32. Sutcliffe IC, Trujillo ME, Goodfellow M (2012) A call to arms for systematists: revitalising the purpose and practises underpinning the description of novel microbial taxa. Antonie Van Leeuwenhoek 101:13–20. doi: 10.1007/s10482-011-9664-0 PubMedCrossRefGoogle Scholar
  33. Sutcliffe IC, Trujillo ME, Whitman WB, Goodfellow M (2013) A call to action for the international committee on systematics of prokaryotes. Trends Microbiol 21:51–52. doi: 10.1016/j.tim.2012.11.004 PubMedCrossRefGoogle Scholar
  34. Tamames J, Rosselló-Móra R (2012) On the fitness of microbial taxonomy. Trends Microbiol 20:514–516. doi: 10.1016/j.tim.2012.08.012 PubMedCrossRefGoogle Scholar
  35. Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kampfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266. doi: 10.1099/Ijs.0.016949-0 PubMedCrossRefGoogle Scholar
  36. Van Oevelen S, De Wachter R, Vandamme P, Robbrecht E, Prinsen E (2004) “Candidatus Burkholderia calva” and “Candidatus Burkholderia nigropunctata” as leaf gall endosymbionts of African Psychotria. Int J Syst Evol Microbiol 54:2237–2239. doi: 10.1099/ijs.0.63188-0 PubMedCrossRefGoogle Scholar
  37. Vandamme P, Pot B, Gillis M, DeVos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438PubMedCentralPubMedGoogle Scholar
  38. Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, Revets H, Lauwers S, Gillis M, Kersters K, Govan JRW (1997) Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 47:1188–1200PubMedCrossRefGoogle Scholar
  39. Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Dowson C, Vandamme P (2009) Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 59:102–111. doi: 10.1099/Ijs.0.001123-0 PubMedCrossRefGoogle Scholar
  40. Verstraete B, Van Elst D, Steyn H, Van Wyk B, Lemaire B, Smets E, Dessein S (2011) Endophytic bacteria in toxic South African plants: identification, phylogeny and possible involvement in gousiekte. PLoS ONE. doi: 10.1371/annotation/e7fa3cdf-c7bc-439f-83a2-36da63ef6c08 Google Scholar
  41. Verstraete B, Peeters C, van Wyk B, Smets E, Dessein S, Vandamme P (2014) Intraspecific variation in Burkholderia caledonica: Europe vs. Africa and soil vs. endophytic isolates. Syst Appl Microbiol in press: 1–6. doi:  10.1016/j.syapm.2013.12.001
  42. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  43. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratory of MicrobiologyGhentBelgium

Personalised recommendations